Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 64(13): 9404-9430, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34156862

RESUMEN

Neglected tropical diseases such as human African trypanosomiasis (HAT) are prevalent primarily in tropical climates and among populations living in poverty. Historically, the lack of economic incentive to develop new treatments for these diseases has meant that existing therapeutics have serious shortcomings in terms of safety, efficacy, and administration, and better therapeutics are needed. We now report a series of 3,5-disubstituted-7-azaindoles identified as growth inhibitors of Trypanosoma brucei, the parasite that causes HAT, through a high-throughput screen. We describe the hit-to-lead optimization of this series and the development and preclinical investigation of 29d, a potent antitrypanosomal compound with promising pharmacokinetic (PK) parameters. This compound was ultimately not progressed beyond in vivo PK studies due to its inability to penetrate the blood-brain barrier (BBB), critical for stage 2 HAT treatments.


Asunto(s)
Indoles/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
2.
RSC Med Chem ; 11(8): 950-959, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479690

RESUMEN

Human African trypanosomiasis is a neglected tropical disease (NTD) that is fatal if left untreated. Although approximately 13 million people live in moderate- to high-risk areas for infection, current treatments are plagued by problems with safety, efficacy, and emerging resistance. In an effort to fill the drug development pipeline for HAT, we have expanded previous work exploring the chemotype represented by the compound NEU-1090, with a particular focus on improvement of absorption, distribution, metabolism and elimination (ADME) properties. These efforts resulted in several compounds with substantially improved aqueous solubility, although these modifications typically resulted in a loss of trypanosomal activity. We herein report the results of our investigation into the antiparasitic activity, toxicity, and ADME properties of this class of compounds in the interest of informing the NTD drug discovery community and avoiding duplication of effort.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA