Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(5): 138, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509412

RESUMEN

Laccases are versatile biocatalysts that are prominent for industrial purposes due to their extensive substrate specificity. Therefore, this research investigated producing laccase from Physisporinus vitreus via liquid fermentation. The results revealed that veratryl alcohol (4mM) was the most effective inducer 7500U/L. On the other hand, Zn ions inhibited laccase production. The optimum carbon and nitrogen sources were glucose and tryptone by 5200 and 3300 U/L, respectively. Moreover, solvents exhibited various impacts on the enzyme activity at three different solvent concentrations (5%, 10% and 20%), however, it showed a highest activity at 5% of the investigated solvent. Ferric ions inhibited the enzyme activity. In addition, the enzyme has a high ability to decolorize azo dyes when using syringaldehyde as a mediator. The purified laccase from Physisporinus vitreus is a promising substance to be used for industrial and environmental applications due to its stability under harsh conditions and efficiency in decolorization of dyes.


Asunto(s)
Compuestos Azo , Lacasa , Polyporales , Colorantes/química , Iones , Solventes
2.
Antibiotics (Basel) ; 13(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38247636

RESUMEN

Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.

3.
Microb Cell Fact ; 22(1): 190, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730554

RESUMEN

BACKGROUND: Hydrogen is a promising source of alternative energy. Fermentative production is more feasible because of its high hydrogen generation rate, simple operating conditions, and utilization of various organic wastes as substrates. The most significant constraint for biohydrogen production is supplying it at a low cost with fewer impurities. RESULTS: Leaf biomass of Calotropis procera was used as a feedstock for a dark fermentative production of hydrogen by Bacillus coagulans AH1 (MN923076). The optimum operation conditions for biohydrogen production were 5.0% substrate concentrationand pH 9.0, at 35 °C. In which the biohydrogen yield was 3.231 mmol H2/g dry biomass without any pretreatments of the biomass. A freshwater microalga Oscillatroia sp was used for upgrading of the produced biohydrogen. It sequestrated 97 and 99% % of CO2 from the gas mixture when it was cultivated in BG11 and BG11-N media, respectively After upgrading process, the residual microalgal cells exhibited 0.21mg/mL of biomass yield,high content of chlorophyll-a (4.8 µg/mL) and carotenoid (11.1 µg/mL). In addition to Oscillatroia sp residual biomass showed a lipid yield (7.5-8.7%) on the tested media. CONCLUSION: Bacillus coagulans AH1 is a promising tool for biohydrogen production avoiding the drawbacks of biomass pretreatment. Oscillatroia sp is encouraged as a potent tool for upgrading and purification of biohydrogen. These findings led to the development of a multiproduct biorefinery with zero waste that is more economically sustainable.


Asunto(s)
Bacillus coagulans , Microalgas , Biomasa , Fermentación , Hidrógeno
4.
Antibiotics (Basel) ; 12(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36830185

RESUMEN

Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.

5.
World J Microbiol Biotechnol ; 39(1): 22, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36422734

RESUMEN

The production of extremozymes from halophilic bacteria has increased significantly due to their stability and efficiency in catalyzing a reaction, as well as their capacity to display optimum activity at various salt concentrations. In the current study, the halophilic bacterium Virgibacillus salarius strain BM-02 could utilize many non-pretreated substrates including cellulose, corn stover, sugarcane bagasse and wheat bran as a sole carbon source. However, wheat bran was the best substrate for achieving optimum saccharification yield (90.1%). The partially purified cellulase was active and stable at a wide range of pH (5-8) with residual activities > 58%. Moreover, it was stable at 5-12% of NaCl. Metal ions have a variable impact on the activity of partially purified cellulase however, Fe+3 exhibited the highest increase in the cellulase activity. The enzyme exhibited a thermal stability at 40, 50 and 60 °C with half-lives of 1049.50, 168.14 and 163.5 min, respectively. The value of Vmax was 22.27 U/mL while Km was 2.1 mM. The activation energy of denaturation Ed 69.81 kJ/mol, the enthalpy values (ΔHd) were positive, and the entropy values (ΔS) were negative. Therefore, V. Salarius is recommended as a novel promising halophilic extremozyme producer and agricultural waste remover in the bio-industrial applications.


Asunto(s)
Celulasa , Saccharum , Biomasa , Celulosa , Fibras de la Dieta
6.
Curr Genomics ; 21(4): 283-294, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33071621

RESUMEN

BACKGROUND: The presence of anthraquinone (Disperse blue 64) and azodyes (Acid yellow 17) in a waterbody are considered among the most dangerous pollutants. METHODS: In this study, two different isolated microbes, bacterium and fungus, were individually and as a co-culture applied for the degradation of Disperse Blue 64 (DB 64) and Acid Yellow 17 (AY 17) dyes. The isolates were genetically identified based upon 16S (for bacteria) and ITS/5.8S (for fungus) rRNA genes sequences as Pseudomoans aeruginosa and Aspergillus flavus, respectively. RESULTS: The fungal/bacterial consortium exhibited a higher percentage of dyes degradation than the individual strains, even at a high concentration of 300 mg/L. Azoreductase could be identified as the main catabolic enzyme and the consortium could induce azoreductase enzyme in the presence of both dyes. However, the specific substrate which achieved the highest azoreductase specific activity was Methyl red (MR) (3.5 U/mg protein). The tentatively proposed metabolites that were detected by HPLC/MS suggested that the reduction process catalyzed the degradation of dyes. The metabolites produced by the action consortium on two dyes were safe on Vicia faba and Triticum vulgaris germination and health of seedlings. Toxicity of the dyes and their degradation products on the plant was different according to the type and chemistry of these compounds as well as the type of irrigated seeds. CONCLUSION: We submit that the effective microbial degradation of DB64 and AY17 dyes will lead to safer metabolic products.

7.
Curr Genomics ; 21(2): 111-118, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32655305

RESUMEN

BACKGROUND: Petroleum polycyclic aromatic hydrocarbons (PAHs) are known to be toxic and carcinogenic for humans and their contamination of soils and water is of great environmental concern. Identification of the key microorganisms that play a role in pollutant degradation processes is relevant to the development of optimal in situ bioremediation strategies. OBJECTIVE: Detection of the ability of Pseudomonas fluorescens AH-40 to consume phenanthrene as a sole carbon source and determining the variation in the concentration of both nahAC and C23O catabolic genes during 15 days of the incubation period. METHODS: In the current study, a bacterial strain AH-40 was isolated from crude oil polluted soil by enrichment technique in mineral basal salts (MBS) medium supplemented with phenanthrene (PAH) as a sole carbon and energy source. The isolated strain was genetically identified based on 16S rDNA sequence analysis. The degradation of PAHs by this strain was confirmed by HPLC analysis. The detection and quantification of naphthalene dioxygenase (nahAc) and catechol 2,3-dioxygenase (C23O) genes, which play a critical role during the mineralization of PAHs in the liquid bacterial culture were achieved by quantitative PCR. RESULTS: Strain AH-40 was identified as pseudomonas fluorescens. It degraded 97% of 150 mg phenanthrene L-1 within 15 days, which is faster than previously reported pure cultures. The copy numbers of chromosomal encoding catabolic genes nahAc and C23O increased during the process of phenanthrene degradation. CONCLUSION: nahAc and C23O genes are the main marker genes for phenanthrene degradation by strain AH-40. P. fluorescence AH-40 could be recommended for bioremediation of phenanthrene contaminated site.

8.
Biomed Res Int ; 2014: 127674, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25177681

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06) was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 as Sphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genes alkB, alkB1, nahAc, C12O, and C23O suggested that ASU-06 might possess genes for aliphatic and PAHs degradation, while PAH-RHDαGP gene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period.


Asunto(s)
Proteínas Bacterianas/metabolismo , Petróleo/microbiología , Hidrocarburos Policíclicos Aromáticos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Sphingomonas/aislamiento & purificación , Sphingomonas/metabolismo , Biodegradación Ambiental , Egipto , Metabolismo , Especificidad de la Especie , Sphingomonas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...