Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 422(2): 96-102, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22230285

RESUMEN

There has been recent growth in the development of activatable near-infrared (NIR) fluorescent probes for molecular imaging, generally designed by placing fluorochromes on a cleavable substrate in close proximity to one another, such that they self-quench, but fluoresce on separation via enzymatic cleavage of the substrate. Although these probes offer excellent contrast, the detection of enzyme activity has largely only been described qualitatively. In order to assess the effectiveness of a probe, it is useful to have a quantitative measure, such as the enzyme-substrate kinetic parameters. We have developed an assay to determine kinetic parameters and applied it to an intramolecularly quenched molecule, Pyro-PtdEtn-BHQ, a NIR fluorescent probe specific to phosphatidylcholine-specific phospholipase C. The development of this assay includes corrections for intermolecular quenching, calibration, optimization of reaction mixtures, and determination of kinetic and inhibition parameters. This assay can easily be extended to analyze and compare the efficiency of other fluorescent activatable phospholipase probes as suitable molecular imaging agents.


Asunto(s)
Pruebas de Enzimas/métodos , Colorantes Fluorescentes/química , Fosfatidilcolinas/química , Fosfolipasas de Tipo C/química , Animales , Bacillus cereus , Pollos , Huevos , Fluorescencia , Humanos , Cinética , Imagen Molecular/métodos , Fosfatidilcolinas/metabolismo , Espectrometría de Fluorescencia , Fosfolipasas de Tipo C/metabolismo
2.
Bioconjug Chem ; 22(12): 2434-43, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22034913

RESUMEN

In this article, the characterization of the first near-infrared (NIR) phospholipase-activated molecular beacon is reported, and its utility for in vivo cancer imaging is demonstrated. The probe consists of three elements: a phospholipid (PL) backbone to which the NIR fluorophore, pyropheophorbide a (Pyro), and the NIR Black Hole Quencher 3 (BHQ) were conjugated. Because of the close proximity of BHQ to Pyro, the Pyro-PtdEtn-BHQ probe is self-quenched until enzyme hydrolysis releases the fluorophore. The Pyro-PtdEtn-BHQ probe is highly specific to one isoform of phospholipase C, phosphatidylcholine-specific phospholipase C (PC-PLC), responsible for catabolizing phosphatidylcholine directly to phosphocholine. Incubation of Pyro-PtdEtn-BHQ in vitro with PC-PLC demonstrated a 150-fold increase in fluorescence that could be inhibited by the specific PC-PLC inhibitor tricyclodecan-9-yl xanthogenate (D609) with an IC(50) of 34 ± 8 µM. Since elevations in phosphocholine have been consistently observed by magnetic resonance spectroscopy in a wide array of cancer cells and solid tumors, we assessed the utility of Pyro-PtdEtn-BHQ as a probe for targeted tumor imaging. Injection of Pyro-PtdEtn-BHQ into mice bearing DU145 human prostate tumor xenografts followed by in vivo NIR imaging resulted in a 4-fold increase in tumor radiance over background and a 2 fold increase in the tumor/muscle ratio. Tumor fluorescence enhancement was inhibited with the administration of D609. The ability to image PC-PLC activity in vivo provides a unique and sensitive method of monitoring one of the critical phospholipase signaling pathways activated in cancer, as well as the phospholipase activities that are altered in response to cancer treatment.


Asunto(s)
Colorantes Fluorescentes/química , Neoplasias de la Próstata/enzimología , Fosfolipasas de Tipo C/metabolismo , Animales , Línea Celular Tumoral , Activación Enzimática , Humanos , Masculino , Ratones , Ratones Desnudos , Microscopía Confocal , Fosfolípidos/química , Fosfolipasas de Tipo C/análisis
3.
Bioconjug Chem ; 21(10): 1724-7, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20882956

RESUMEN

The primary focus of this work was to develop activatable probes suitable for in vivo detection of phospholipase activity. Phospholipases (PLs) are ubiquitous enzymes that perform a number of critical regulatory functions. They catalyze phospholipid breakdown and are categorized as A(1), A(2) (PLA(2)), C (PLC), and D (PLD) based on their site of action. Here, we report the design, synthesis, and characterization of self-quenching reporter probes that release fluorescent moieties upon cleavage with PLA(2) or PLC. A series of phospholipids were synthesized bearing the NIR fluorophore pyropheophorbide a (Pyro) at the sn-2 position. Fluorescence quenching was achieved by attachment of either a positively charged black hole quencher-3 (BHQ-3) to the phospholipid headgroup or another neutral Pyro moiety at the sn-1 position. The specificity to different phospholipases was modulated by insertion of spacers (C(6), C(12)) between Pyro and the lipid backbone. The specificity of the quenched fluorescent phospholipids was assayed on a plate reader against a number of phospholipases and compared with two commercial probes bearing the visible fluorophore BODIPY. While PyroC(6)-PyroC(6)-PtdCho revealed significant background fluorescence, and a 10% fluorescence increase under the action of PLA(2), Pyro-PtdEtn-BHQ demonstrated high selective sensitivity to PLC, particularly to the PC-PLC isoform, and its sensitivity to PLA(2) was negligible due to steric hindrance at the sn-2 position. In contrast, the C(12)-spacered PyroC(12)-PtdEtn-BHQ demonstrated a remarkable selectivity for PLA(2) and the best relative PLA(2)/PLC sensitivity, significantly outperforming previously known probes. These results open an avenue for future in vivo experiments and for new probes to detect PL activity.


Asunto(s)
Diseño de Fármacos , Pruebas de Enzimas/métodos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Rayos Infrarrojos , Fosfolipasas A2/metabolismo , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas A2/química , Fosfolipasas de Tipo C/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA