Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(5): 1521-1528, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38299494

RESUMEN

Stabilization of ions in exotic oxidation states is beneficial for the development of new materials for green energy technologies. Exotic Mn1+ was proposed to play a role in the function of sodium-based Prussian blue analogues (PBA) batteries, a highly sought-out technology for industrial energy storage. Here, we report the detailed electronic structure characterization of uncharged and charged sodium-based manganese hexacyanomanganate anodes via Mn K-edge X-ray absorption spectroscopy (XAS), Kß nonresonant X-ray emission (XES), and resonant inelastic X-ray scattering (RIXS). The latter allowed us to obtain site-selective XANES information about two distinct Mn centers. The obtained spectroscopic data represent the first electronic structure characterization of low-spin Mn1+ using hard X-ray RIXS and XES and allowed us to confirm its role in anode reduction. Our experimental approach can be expanded to analysis of analogues with other 3d transition metals broadening the application of exotic ionic states in materials engineering.

2.
J Catal ; 4292024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38187083

RESUMEN

Photoelectrochemical water splitting can produce green hydrogen for industrial use and CO2-neutral transportation, ensuring the transition from fossil fuels to green, renewable energy sources. The iron-based electrocatalyst [FeII4FeIII(µ-3-O)(µ-L)6]3+ (LH = 3,5-bis(2-pyridyl)pyrazole) (1), discovered in 2016, is one of the fastest molecular water oxidation catalysts (WOC) based on earth-abundant elements. However, its water oxidation reaction mechanism has not been yet fully elucidated. Here, we present in situ X-ray spectroscopy and electron paramagnetic resonance (EPR) analysis of electrochemical water oxidation reaction (WOR) promoted by (1) in water-acetonitrile solution. We observed transient reactive intermediates during the in situ electrochemical WOR, consistent with a coordination sphere expansion prior to the onset of catalytic current. At a pre-catalytic (~+1.1 V vs. Ag/AgCl) potential, the distinct g~2.0 EPR signal assigned to FeIII/FeIV interaction was observed. Prolonged bulk electrolysis at catalytic (~+1.6 V vs. Ag/AgCl) potential leads to the further oxidation of Fe centers in (1). At the steady state achieved with such electrolysis, the formation of hypervalent FeV=O and FeIV=O catalytic intermediates was inferred with XANES and EXAFS fitting, detecting a short Fe=O bond at ~1.6 Å. (1) was embedded into MIL-126 MOF with the formation of (1)-MIL-126 composite. The latter was tested in photoelectrochemical WOR and demonstrated an improvement of electrocatalytic current upon visible light irradiation in acidic (pH=2) water solution. The presented spectroscopic analysis gives further insight into the catalytic pathways of multinuclear systems and should help the subsequent development of more energy- and cost-effective catalysts of water splitting based on earth-abundant metals. Photoelectrocatalytic activity of (1)-MIL-126 confirms the possibility of creating an assembly of (1) inside a solid support and boosting it with solar irradiation towards industrial applications of the catalyst.

3.
PLoS Pathog ; 19(8): e1011544, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37595007

RESUMEN

Astroviruses (AstVs) can cause of severe infection of the central nervous system (CNS) in immunocompromised individuals. Here, we identified a human AstV of the VA1 genotype, HAstV-NIH, as the cause of fatal encephalitis in an immunocompromised adult. We investigated the cells targeted by AstV, neurophysiological changes, and host responses by analyzing gene expression, protein expression, and cellular morphology in brain tissue from three cases of AstV neurologic disease (AstV-ND). We demonstrate that neurons are the principal cells targeted by AstV in the brain and that the cerebellum and brainstem have the highest burden of infection. Detection of VA1 AstV in interconnected brain structures such as thalamus, deep cerebellar nuclei, Purkinje cells, and pontine nuclei indicates that AstV may spread between connected neurons transsynaptically. We found transcriptional dysregulation of neural functions and disruption of both excitatory and inhibitory synaptic innervation of infected neurons. Importantly, transcriptional dysregulation of neural functions occurred in fatal cases, but not in a patient that survived AstV-ND. We show that the innate, but not adaptive immune response was transcriptionally driving host defense in the brain of immunocompromised patients with AstV-ND. Both transcriptome and molecular pathology studies showed that most of the cellular changes were associated with CNS-intrinsic cells involved in phagocytosis and injury repair (microglia, perivascular/parenchymal border macrophages, and astrocytes), but not CNS-extrinsic cells (T and B cells), suggesting an imbalance of innate and adaptive immune responses to AstV infection in the brain as a result of the underlying immunodeficiencies. These results show that VA1 AstV infection of the brain in immunocompromised humans is associated with imbalanced host defense responses, disruption of neuronal somatodendritic compartments and synapses and increased phagocytic cellular activity. Improved understanding of the response to viral infections of the human CNS may provide clues for how to manipulate these processes to improve outcomes.


Asunto(s)
Infecciones por Astroviridae , Encéfalo , Adulto , Humanos , Sistema Nervioso Central , Neuronas , Inmunidad
4.
J Am Chem Soc ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37036435

RESUMEN

A high-valent manganese(IV)-hydroxo porphyrin π-cation radical complex, [Mn(IV)(OH)(Porp+•)(X)]+, was synthesized and characterized spectroscopically. The Mn porphyrin intermediate was highly reactive in alkane hydroxylation and oxygen atom transfer reactions. More importantly, the Mn porphyrin intermediate reacted with water at a fast rate, resulting in the dioxygen evolution. To the best of our knowledge, we report the first manganese Cpd I model compound bearing a porphyrin π-cation radical ligand with a high reactivity in oxidation reactions, including water oxidation.

5.
J Phys Chem Lett ; 14(1): 41-48, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36566390

RESUMEN

Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kß emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.


Asunto(s)
Hemo , Metaloproteínas , Hemo/metabolismo , Espectrometría por Rayos X , Metales , Dominio Catalítico
6.
Dalton Trans ; 50(48): 18143-18154, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34854436

RESUMEN

We report the synthesis, crystal structure and magnetic properties of the new heptacoordinated mononuclear erbium(III) complex (Et3NH)[Er(H2DAPS)Cl2] (H4DAPS = 2,6-diacetylpyridine bis-(salicylhydrazone)) (1). The coordination polyhedron around the Er(III) ion features a slightly distorted pentagonal bipyramid formed by the pentagonal N3O2 chelate ring of the H2DAPS ligand in the equatorial plane and two apical chloride ligands. Detailed high-frequency/high-field electron paramagnetic resonance (HF-EPR) studies of 1 result in the precise determination of the crystal field (CF) splitting energies (0, 290 and 460 GHz) and effective g-values of the three lowest Kramers doublets (KDs) of the Er(III) ion. The obtained HF-EPR data are in good agreement with the results from CF analysis for the Er(III) ion based on the simulation of the dc magnetic data of 1. The results from dynamic susceptibility measurements indicate that there is no slow relaxation of magnetisation behaviour. This observation is discussed in terms of the electronic structure of 1 obtained from experimental and theoretical results.

7.
Inorg Chem ; 60(23): 17462-17479, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757728

RESUMEN

A potassium salt of the N2S2O2-coordination Fe(III) anion K[Fe(5Cl-thsa)2] (1) (5Cl-thsa - 5-chlorosalicylaldehyde thiosemicarbazone) is synthesized and characterized structurally and magnetically over a wide temperature range. Two polymorphs of salt 1 characterized by the common 2D polymer nature and assigned to the same orthorhombic Pbcn space group have been identified. The molecular structure of the minor polymorph of 1 was solved and refined at 100, 250, and 300 K is shown to correspond to the LS configuration. The dominant polymorph of 1 features K+ cations disordered over a few crystallographic sites, while the minor polymorph includes fully ordered K+ cations. The major polymorph exhibits a complete three-step cooperative spin-crossover transition both in the heating and cooling modes: The first step occurs in a temperature range from 2 to 50 K; the second abrupt hysteretic step occurs from 200 to 250 K with T1/2 = 230 K and a 6 K hysteresis loop. The third gradual step occurs from 250 to 440 K. According to 57Fe Mössbauer, XRPD, and EXAFS data, the spin-crossover transition for the dominant polymorph is quite peculiar. Indeed, the increase in the HS concentration by 57% at the second step does not result in the expected significant increase in the iron(III)-ligand bond lengths. In addition, the final step of the spin conversion (ΔγHS = 26%) is associated with a structural phase transition with a symmetry lowering from the orthorhombic (Pbcn) to the monoclinic (P21/n) space group. This nontrivial phenomenon was investigated in detail by applying magnetization measurements, electron spin resonance, 57Fe Mössbauer spectroscopy, and DFT calculations. These results provide a new platform for understanding the multistep spin-crossover character in the Fe(III) thsa-complexes and related compounds.

8.
Molecules ; 26(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34834001

RESUMEN

A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2]- (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2]- (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1-6 were studied. The AC magnetic measurements revealed that most of Compounds 1-6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16-28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1-6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.

9.
Nat Commun ; 12(1): 2469, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927207

RESUMEN

Recognition of Zika virus (ZIKV) sexual transmission (ST) among humans challenges our understanding of the maintenance of mosquito-borne viruses in nature. Here we dissected the relative contributions of the components of male reproductive system (MRS) during early male-to-female ZIKV transmission by utilizing mice with altered antiviral responses, in which ZIKV is provided an equal opportunity to be seeded in the MRS tissues. Using microRNA-targeted ZIKV clones engineered to abolish viral infectivity to different parts of the MRS or a library of ZIKV genomes with unique molecular identifiers, we pinpoint epithelial cells of the epididymis (rather than cells of the testis, vas deferens, prostate, or seminal vesicles) as a most likely source of the sexually transmitted ZIKV genomes during the early (most productive) phase of ZIKV shedding into the semen. Incorporation of this mechanistic knowledge into the development of a live-attenuated ZIKV vaccine restricts its ST potential.


Asunto(s)
Epidídimo/virología , Células Epiteliales/virología , Enfermedades Virales de Transmisión Sexual/transmisión , Infección por el Virus Zika/transmisión , Animales , Línea Celular , Chlorocebus aethiops , Epitelio/virología , Femenino , Genitales Masculinos/anatomía & histología , Genitales Masculinos/virología , Masculino , Ratones , Células Vero , Virus Zika
10.
Elife ; 102021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33599611

RESUMEN

Treatment for many viral infections of the central nervous system (CNS) remains only supportive. Here we address a remaining gap in our knowledge regarding how the CNS and immune systems interact during viral infection. By examining the regulation of the immune and nervous system processes in a nonhuman primate model of West Nile virus neurological disease, we show that virus infection disrupts the homeostasis of the immune-neural-synaptic axis via induction of pleiotropic genes with distinct functions in each component of the axis. This pleiotropic gene regulation suggests an unintended off-target negative impact of virus-induced host immune responses on the neurotransmission, which may be a common feature of various viral infections of the CNS.


Asunto(s)
Inmunidad Adaptativa/genética , Sistema Nervioso Central/inmunología , Pleiotropía Genética/inmunología , Inmunidad Innata/genética , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Macaca mulatta , Masculino , Fiebre del Nilo Occidental/virología
11.
Dalton Trans ; 49(43): 15287-15298, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33112327

RESUMEN

A series of three mononuclear pentagonal-bipyramidal V(iii) complexes with the equatorial pentadentate N3O2 ligand (2,6-diacethylpyridinebis(benzoylhydrazone), H2DAPBH) in the different charge states (H2DAPBH0, HDAPBH1-, DAPBH2-) and various apical ligands (Cl-, CH3OH, SCN-) were synthesized and characterized structurally and magnetically: [V(H2DAPBH)Cl2]Cl·C2H5OH (1), [V(HDAPBH)(NCS)2]·0.5CH3CN·0.5CH3OH (2) and [V(DAPBH)(CH3OH)2]Cl·CH3OH (3). All three complexes reveal paramagnetic behavior, resulting from isolated S = 1 spins with positive zero-field splitting energy expected for the high-spin ground state of the V3+ (3d2) ion in a PBP coordination. Detailed high-field EPR measurements for compound 3 show that its magnetic properties are best described by using the spin Hamiltonian with the positive ZFS energy (D = +4.1 cm-1) and pronounced dimer-like antiferromagnetic spin coupling (J = -1.1 cm-1). Theoretical analysis based on superexchange calculations reveals that the long-range spin coupling between distant V3+ ions (8.65 Å) is mediated through π-stacking contacts between the planar DAPBH2- ligands of two neighboring [V(DAPBH)(CH3OH)2]+ complexes.

12.
Inorg Chem ; 59(1): 563-578, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31858796

RESUMEN

The syntheses, structure and magnetic properties are reported for five novel 1D polymeric azido-bridged lanthanide complexes with the general formula {[Ln(DAPMBH)(N3)C2H5OH]C2H5OH}n where H2DAPMBH = 2,6-diacetylpyridine bis(4-methoxybenzoylhydrazone)-a new pentadentate pyridine-base [N3O2] ligand and Ln = Dy (1), Y0.930Dy0.070 (2), Er (3), Y0.923Er0.077 (4), and Gd (5). X-ray diffraction analysis of 1-5 show that the central lanthanide atoms are eight-coordinated with the N5O3 donor set originating from the ligand DAPMBH, one coordinated ethanol molecule and two end-to-end type N3- bridges connecting the metal centers into infinite chain. The [LnN5O3] coordination polyhedron can be regarded as a distorted dodecahedron (D2d). AC magnetic measurements revealed that compounds 1-4 show field-induced single-molecule magnet behavior, with estimated energy barriers Ueff ≈ 47-17 K. The experimental study of magnetic properties was complemented by theoretical analysis based on crystal-field calculations. Direct current magnetic susceptibility studies revealed marginally weak intrachain exchange interaction between Ln3+ ions mediated by the end-to-end azide bridging groups (J ≈ -0.015 cm-1 for 5). Comparative analysis of static and dynamic magnetic properties of magnetically concentrated (1, 3) and diluted (2, 4) Dy and Er compounds showed that, despite fascinating 1D azido-bridged chain structure, compounds 1 and 3 are not single-chain magnets; their magnetic behavior is largely due to single-ion magnetic anisotropy of individual Ln3+ ions.

13.
Dalton Trans ; 48(25): 9328-9336, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31166344

RESUMEN

The iron(iii) complex [Fe(Hsemsal)(semsal)]·3H2O (1) (H2semsal - salicylaldehyde semicarbazone) has been synthesized and characterized by powder and single crystal X-ray diffraction, and magnetic susceptibility measurements. Crystal structure analysis showed that the complex forms neat stacks stabilized by hydrogen-bonding through water molecules and π-π interactions between phenolate rings of ligands. The complex does not exhibit spin-crossover phenomena and remains in the high-spin state down to 2 K. DFT calculations were performed for a series of neutral Fe(iii) complexes, and the influence of the N2S2O2, N2Se2O2 and N2O4 coordination environment on the spin transition in these complexes was traced. The effect of substituents in the benzene ring of salicylaldehyde on the stabilization of the HS or LS states in complexes of this type was analyzed.

14.
Chemistry ; 25(43): 10204-10213, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31144786

RESUMEN

We present herein the synthesis, crystal structure, and electric and magnetic properties of the spin-crossover salt [Mn(5-Cl-sal-N-1,5,8,12)]TCNQ1.5 ⋅2 CH3 CN (I), where 5-Cl-sal-N-1,5,8,12=N,N'-bis(3-(2-oxy-5-chlorobenzylideneamino)propyl)-ethylenediamine, containing distinct conductive and magnetic blocks along with acetonitrile solvent molecules. The MnIII complex with a Schiff-base ligand, [Mn(5-Cl-sal-N-1,5,8,12)]+ , acts as the magnetic unit, and the π-electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ- ) is the conducting unit. The title compound (I) exhibits semiconducting behavior with room temperature conductivity σRT ≈1×10-4  ohm-1 cm-1 and activation energy Δ ≈0.20 eV. In the temperature range 73-123 K, it experiences a hysteretic phase transition accompanied by a crossover between the low-spin S=1 and high-spin S=2 states of MnIII and changes in bond lengths within the MnN4 O2 octahedra. The pronounced shrinkage of the basal Mn-N bonds in I at the spin crossover suggests that the d x 2 - y 2 orbital is occupied/deoccupied in this transition. Interestingly, the bromo isomorphic counterpart [Mn(5-Br-sal-N-1,5,8,12)]TCNQ1.5 ⋅2 CH3 CN (II) of the title compound evidences no spin-crossover phenomena and remains in the high-spin state in the temperature range 2-300 K. Comparison of the chloro and bromo compounds allows the thermal and spin-crossover contributions to the overall variation in bond lengths to be distinguished. The difference in magnetic behavior of these two salts has been ascribed to intermolecular supramolecular effects on the spin transition. Discrete hydrogen bonding exists between cations and cations and anions in both compounds. However, the hydrogen bonding in the crystals of II is much stronger than in I. The relatively close packing arrangement of the [Mn(5-Br-sal-N-1,5,8,12)]+ cations probably precludes their spin transformation.

15.
mBio ; 10(2)2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015334

RESUMEN

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, attempts to develop of a live attenuated virus (LAV) vaccine against TBEV with acceptable safety and immunogenicity characteristics have not been successful. To overcome this impasse, we generated a chimeric TBEV that was highly immunogenic in nonhuman primates (NHPs). The chimeric virus contains the prM/E genes of TBEV, which are expressed in the genetic background of an antigenically closely related, but less pathogenic member of the TBEV complex-Langat virus (LGTV), strain T-1674. The neurovirulence of this chimeric virus was subsequently controlled by robust targeting of the viral genome with multiple copies of central nervous system-enriched microRNAs (miRNAs). This miRNA-targeted T/1674-mirV2 virus was highly stable in Vero cells and was not pathogenic in various mouse models of infection or in NHPs. Importantly, in NHPs, a single dose of the T/1674-mirV2 virus induced TBEV-specific neutralizing antibody (NA) levels comparable to those seen with a three-dose regimen of an inactivated TBEV vaccine, currently available in Europe. Moreover, our vaccine candidate provided complete protection against a stringent wild-type TBEV challenge in mice and against challenge with a parental (not miRNA-targeted) chimeric TBEV/LGTV in NHPs. Thus, this highly attenuated and immunogenic T/1674-mirV2 virus is a promising LAV vaccine candidate against TBEV and warrants further preclinical evaluation of its neurovirulence in NHPs prior to entering clinical trials in humans.IMPORTANCE Tick-borne encephalitis virus (TBEV) is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, efforts to develop of TBEV live attenuated virus (LAV) vaccines with acceptable safety and immunogenicity characteristics have not been successful. Here we report the development and evaluation of a highly attenuated and immunogenic microRNA-targeted TBEV LAV.


Asunto(s)
Anticuerpos Antivirales/sangre , Portadores de Fármacos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/prevención & control , Vectores Genéticos , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Chlorocebus aethiops , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/inmunología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Células Vero , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Vacunas Virales/genética , Replicación Viral
16.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 903-913, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830770

RESUMEN

Single crystals of Rb2CaCu6(PO4)4O2 were synthesized by a hydrothermal method in the multicomponent system CuCl2-Ca(OH)2-RbCl-B2O3-Rb3PO4. The synthesis was carried out in the temperature range from 690 to 700 K and at the general pressure of 480-500 atm [1 atm = 101.325 kPa] from the mixture in the molar ratio 2CuO:CaO:Rb2O:B2O3:P2O5. The crystals studied by single-crystal X-ray analysis were found to be monoclinic, space group C2, a = 16.8913 (4), b = 5.6406 (1), c = 8.3591 (3) Å, ß = 93.919 (3)°, V = 794.57 (4) Å3. The crystal structure of Rb2CaCu6(PO4)4O2 is similar to that of shchurovskyite and dmisokolovite and is based upon a heteropolyhedral open framework formed by polar layers of copper polyhedra linked via isolated PO4 tetrahedra. The presence of well-isolated 2D heteropolyhedral layers in the title compound suggests low-dimensional magnetic behavior which is masked, however, by the fierce competition between multiple ferromagnetic and antiferromagnetic exchange interactions. At TC = 25 K, Rb2CaCu6(PO4)4O2 reaches a magnetically ordered state with large residual magnetization.

17.
Inorg Chem ; 58(1): 610-621, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30565920

RESUMEN

Two new sodium nickel phosphates, Na5Ni2(PO4)3·H2O (I) and Na6Ni2(PO4)3OH (II), have been synthesized hydrothermally and characterized by synchrotron X-ray diffraction, electron diffraction, low-temperature thermodynamic and magnetic measurements, and ab initio calculations. Unlike the majority of Ni2+ compounds, I and II show predominant ferromagnetic exchange couplings. I crystallizes in the monoclinic space group P21/ n ( a = 14.0395(4) Å, b = 5.1847(14) Å, c = 16.4739(4) Å, ß = 110.4186(14)°) and features chains of ferromagnetically coupled Ni2+ ions. In II with the orthorhombic space group Pcmb ( a = 7.5007(15) Å, b = 21.4661(4) Å, c = 7.1732(15) Å), the ferromagnetically coupled Ni2+ ions form dimers arranged on a spin ladder. Both compounds represent rare examples of quasi-one-dimensional ferromagnets. Structural features behind this unusual magnetic behavior are discussed.

18.
Nat Commun ; 9(1): 5350, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559387

RESUMEN

Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract (MRT) poses new challenges for controlling virus outbreaks and developing live-attenuated vaccines. To elucidate routes of ZIKV dissemination in the MRT, we here generate microRNA-targeted ZIKV clones that lose the infectivity for (1) the cells inside seminiferous tubules of the testis, or (2) epithelial cells of the epididymis. We trace ZIKV dissemination in the MRT using an established mouse model of ZIKV pathogenesis. Our results support a model in which ZIKV infects the testis via a hematogenous route, while infection of the epididymis can occur via two routes: (1) hematogenous/lymphogenous and (2) excurrent testicular. Co-targeting of the ZIKV genome with brain-, testis-, and epididymis-specific microRNAs restricts virus infection of these organs, but does not affect virus-induced protective immunity in mice and monkeys. These defined alterations of ZIKV tropism represent a rational design of a safe live-attenuated ZIKV vaccine.


Asunto(s)
Epidídimo/virología , Túbulos Seminíferos/virología , Infección por el Virus Zika/transmisión , Virus Zika/genética , Virus Zika/patogenicidad , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Genoma Viral/genética , Macaca mulatta , Masculino , Ratones , MicroARNs/genética , Células Vero , Virus Zika/inmunología , Infección por el Virus Zika/patología , Infección por el Virus Zika/veterinaria
19.
Annu Rev Virol ; 5(1): 255-272, 2018 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-30265628

RESUMEN

Flaviviruses are major emerging human pathogens on a global scale. Some flaviviruses can infect the central nervous system of the host and therefore are regarded as neurotropic. The most clinically relevant classical neurotropic flaviviruses include Japanese encephalitis virus, West Nile virus, and tick-borne encephalitis virus. In this review, we focus on these flaviviruses and revisit the concepts of flaviviral neurotropism, neuropathogenicity, neuroinvasion, and resultant neuropathogenesis. We attempt to synthesize the current knowledge about interactions between the central nervous system and flaviviruses from the neuroanatomical and neuropathological perspectives and address some misconceptions and controversies. We hope that revisiting these neuropathological concepts will improve the understanding of flaviviral neuroinfections. This, in turn, may provide further guiding foundations for relevant studies of other emerging or geographically expanding flaviviruses with neuropathogenic potential, such as Zika virus and dengue virus, and pave the way for intelligent therapeutic strategies harnessing potentially beneficial, protective host responses to interfere with disease progression and outcome.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Encefalitis Viral/patología , Encefalitis Viral/virología , Interacciones Huésped-Patógeno , Virus del Nilo Occidental/patogenicidad , Animales , Encefalitis Viral/fisiopatología , Humanos , Tropismo Viral
20.
Acta Crystallogr C Struct Chem ; 74(Pt 5): 641-649, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726476

RESUMEN

Rubidium tetramanganese tris(phosphate), RbMn4(PO4)3, has been synthesized as single crystals under hydrothermal conditions. The crystal structure was refined in the space group Pnnm (D2h12). It is argued that the size factor RM/RA, i.e. the ratio of the A+ ionic radius to the M2+ ionic radius, within the morphotropic series AM4(TO4)3 corresponds to a specific type of crystal structure. At low temperatures, the antiferromagnet superimposed on a buckled kagomé network in RbMn4(PO4)3 experiences a transition into a long-range ordered state with finite spontaneous magnetization. First principles calculations provide the dominant magnetic exchange interactions both within and between the kagomé layers. The analysis of these interactions allows us to suggest a model of alternating ferromagnetic and antiferromagnetic arrangements within chains of Mn3 atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...