Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(4): 240071, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38601027

RESUMEN

The Jurassic period was a time of major diversification for Mesozoic marine reptiles, including Ichthyosauria, Plesiosauria and thalattosuchian Crocodylomorpha. The latter originated in the Early Jurassic and thrived during the Late Jurassic. Unfortunately, the Middle Jurassic, a crucial time in their evolution, has a poor fossil record. Here, we document the first evidence of macrophagous/durophagous Machimosaurini-tribe teleosauroid thalattosuchians from the late Bajocian (ca 169 Ma) in the form of three robust tooth crowns with conical blunt shapes and anastomosed pattern of thick enamel ridges towards the apex, associated with the skeleton of a large ichthyosaur lacking preserved tooth crowns. The tooth crowns were found on the posterior section of the lower jaw (left angular), a lacrimal and the axis neural arch of the ichthyosaur. In addition, some of the distal sections of the posterior dorsal ribs of the ichthyosaur skeleton exhibit rounded bite marks and some elongated furrows that fit in size and shape with the Machimosaurini teeth. These marks, together with the absence of healing in the rib bone are interpreted here as the indicators of peri- to post-mortem scavenging by a Machimosaurini teleosauroid after the large ichthyosaur carcass settled on the floor of a shallow ocean.

2.
BMC Ecol Evol ; 24(1): 34, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493100

RESUMEN

The Middle Jurassic is an important time period for the evolutionary history of marine reptiles as it represented a transitional phase for many clades. Notably, in ichthyosaurs, many early parvipelvian taxa went extinct. The Middle Jurassic saw the emergence of the derived Ophthalmosauria, ultimately becoming the dominant ichthyosaurian clade by the end of the epoch. Even though this is an important period in the evolutionary history of Ophthalmosauria, our understanding remains limited in terms of morphology and taxonomy due to the scarcity of vertebrate-bearing strata. Here we present a large new ichthyosaur from the Bajocian of Switzerland, represented by an almost complete skull with 3D-preserved bones, the (inter)clavicles and a large portion of the postcranial skeleton. After CT- and surface scanning, we reconstructed the 3D in vivo morphology. Our morphological observations and phylogenetic analyses show that the new taxon named Argovisaurus martafernandezi is nested at the base of the Ophthalmosauria. The holotype and only known specimen of Argovisaurus likely represents an adult individual. Bajocian members of the Ophthalmosauria (Mollesaurus and Argovisaurus) were large-bodied animals, a trait typically associated with the more derived Platypterygiinae. This hints at the importance of a large body size early in ophthalmosaurian evolution.LSID: urn:lsid:zoobank.org:act:C3312628-1544-4B87-BBE3-B12346A30BE3LSID: urn:lsid:zoobank.org:act:23C2BD71-8CF0-4D99-848A-0D631518415B.


Asunto(s)
Fósiles , Cráneo , Animales , Filogenia , Cráneo/anatomía & histología , Reptiles/anatomía & histología , Tamaño Corporal
3.
Swiss J Palaeontol ; 142(1): 27, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810205

RESUMEN

Relatively complete ontogenetic series are comparatively rare in the vertebrate fossil record. This can create biases in our understanding of morphology and evolution, since immaturity can represent a source of unrecognized intraspecific variation in both skeletal anatomy and ecology. In the extinct marine reptile clade Ichthyopterygia, ontogenetic series were widely studied only in some Jurassic genera, while the ontogeny of the oldest and most basal members of the clade is very poorly understood. Here, we investigate cranial ontogeny in Mixosaurus cornalianus, from the Middle Triassic Besano Formation of the Swiss and Italian Alps. This small-bodied taxon is represented by a wealth of material from multiple size classes, including fetal material. This allows us to assess ontogenetic changes in cranial morphology, and identify stages in the ontogenetic trajectory where divergence with more derived ichthyosaurs has occurred. Early ontogenetic stages of Mixosaurus show developmental patterns that are reminiscent of the presumed ancestral (early diverging sauropsid) condition. This is prominently visible in the late fetal stage in both the basioccipital, which shows morphology akin to basal tubera, and in the postorbital, which has a triradiate head. The ontogenetic trajectory of at least some of the cranial elements of Mixosaurus is therefore likely still very akin to the ancestral condition, even though the adult cranium diverges from the standard diapsid morphology. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00289-z.

4.
BMC Ecol Evol ; 23(1): 12, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072698

RESUMEN

According to a longstanding paradigm, aquatic amniotes, including the Mesozoic marine reptile group Ichthyopterygia, give birth tail-first because head-first birth leads to increased asphyxiation risk of the fetus in the aquatic environment. Here, we draw upon published and original evidence to test two hypotheses: (1) Ichthyosaurs inherited viviparity from a terrestrial ancestor. (2) Asphyxiation risk is the main reason aquatic amniotes give birth tail-first. From the fossil evidence, we conclude that head-first birth is more prevalent in Ichthyopterygia than previously recognized and that a preference for tail-first birth likely arose in derived forms. This weakens the support for the terrestrial ancestry of viviparity in Ichthyopterygia. Our survey of extant viviparous amniotes indicates that fetal orientation at birth reflects a broad diversity of factors unrelated to aquatic vs. terrestrial habitat, further undermining the asphyxiation hypothesis. We propose that birth preference is based on parturitional mechanics or carrying efficiency rather than habitat.


Asunto(s)
Fósiles , Reptiles , Animales , Reptiles/anatomía & histología , Feto
5.
Sci Rep ; 12(1): 1707, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105895

RESUMEN

The availability of a large sample size from a range of ontogenetic stages makes Stenopterygius quadriscissus a good model to study ontogenetic variation in a fossil sauropsid. We qualitatively examined pre- and postnatal ontogenetic changes in the cranium of S. quadriscissus. The prenatal ossification sequence is similar to other diapsids, exhibiting delayed chondrocranial ossification compared to the dermatocranium. In the dermatocranium, the circumorbital area is more ossified earlier in development relative to other elements, especially those of the skull roof where ossification is comparatively weaker across prenatal stages. Perinatally all cranial elements are ossified, and many scarf and step joints are already closed. We propose four prenatal and three postnatal stages in S. quadriscissus on the basis of relative ossification, size and qualitative cranial characters pertaining to the jugal, parietal, frontal, pterygoid and surangular. These will provide a basis for determining ontogenetic stages in other ichthyosaurs. Moreover, our postnatal observations aid in refining ontogenetic characters for phylogenetic studies. Lastly, we observed that the antimeric sutures of the midline of the skull roof are open perinatally and that fusion of the midline only appears in the adult stage. We hypothesize that the loose connection of the midline functions as a fontanelle, limiting potential damage during birth.


Asunto(s)
Desarrollo Embrionario/fisiología , Fósiles , Osteogénesis/fisiología , Reptiles/anatomía & histología , Reptiles/embriología , Cráneo/anatomía & histología , Cráneo/embriología , Animales , Animales Recién Nacidos , Organismos Acuáticos/crecimiento & desarrollo , Femenino , Filogenia , Embarazo , Reptiles/crecimiento & desarrollo , Cráneo/crecimiento & desarrollo
6.
Sci Rep ; 10(1): 4206, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144303

RESUMEN

Changing predator-prey interactions during the Mesozoic Marine Revolution (MMR) profoundly altered the trajectory of marine tetrapod evolution. Here, we assess potential signatures of this landmark transition through the fossil record of skeletal pathologies in ichthyosaurs - iconic marine reptiles that developed increasingly 'fish-like' body plans over time. We surveyed a stratigraphically constrained sample of 200 Middle Triassic ichthyosaur specimens and compared the type, distribution and prevalence of pathologies with an approximately equivalent assemblage of Early Jurassic age. Overall, skeletal pathologies were equally prevalent in these groups, and most often manifested in species >4 m long. However, pathological bones were found to be concentrated in the hind limbs and tail of Triassic ichthyosaurs, whereas the jaws, forelimbs, and ribcage were preferentially affected in Jurassic taxa. We posit that the occurrence of ankylosed zygapophyses in the caudal peak of Triassic ichthyosaurs could represent a functional by-product of their primitive 'eel-like' swimming. Conversely, increased instances of broken ribs in Jurassic ichthyosaurs may infer ramming or tail strike behaviours that characterise morphologically 'fish-like' marine tetrapods, such as modern toothed whales. Different categories of skeletal pathologies thus evidently reflect structural modifications in the ichthyosaur body plan, and indirectly coincide with ecological turnover during the MMR.


Asunto(s)
Evolución Biológica , Fósiles , Esqueleto/patología , Animales , Filogenia , Reptiles
7.
R Soc Open Sci ; 6(7): 190264, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31417732

RESUMEN

Palaeoepidemiological studies related to palaeoecology are rare, but have the potential to provide information regarding ecosystem-level characteristics by measuring individual health. In order to assess factors underlying the prevalence of pathologies in large marine vertebrates, we surveyed ichthyosaurs (Mesozoic marine reptiles) from the Posidonienschiefer Formation (Early Jurassic: Toarcian) of southwestern Germany. This Formation provides a relatively large sample from a geologically and geographically restricted interval, making it ideal for generating baseline data for a palaeoepidemiological survey. We examined the influence of taxon, anatomical region, body size, ontogeny and environmental change, as represented by the early Toarcian Oceanic Anoxic Event, on the prevalence of pathologies, based on a priori ideas of factors influencing population skeletal health. Our results show that the incidence of pathologies is dependent on taxon, with the small-bodied genus Stenopterygius exhibiting fewer skeletal pathologies than other genera. Within Stenopterygius, we detected more pathologies in large adults than in smaller size classes. Stratigraphic horizon, a proxy for palaeoenvironmental change, did not influence the incidence of pathologies in Stenopterygius. The quantification of the occurrence of pathologies within taxa and across guilds is critical to constructing more detailed hypotheses regarding changes in the prevalence of skeletal injury and disease through Earth history.

8.
PLoS One ; 13(10): e0204951, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356279

RESUMEN

Paleopathologies document skeletal damage in extinct organisms and can be used to infer the causes of injury, as well as aspects of related biology, ecology and behavior. To date, few studies have been undertaken on Jurassic marine reptiles, while ichthyosaur pathologies in particular have never been systematically evaluated. Here we survey 41 specimens of the apex predator ichthyosaur Temnodontosaurus from the Early Jurassic of southern Germany in order to document the range and absolute frequency of pathologies observed in this taxon as a function of the number of specimens examined. According to our analysis, most observed pathologies in Temnodontosaurus are force-induced traumas with signs of healing, possibly inflicted during aggressive interactions with conspecifics. When the material is preserved, broken ribs are correlated in most of the cases with traumas elsewhere in the skeleton such as cranial injuries. The range of cranial pathologies in Temnodontosaurus is similar to those reported for extinct cetaceans and mosasaurs, which were interpreted as traces of aggressive encounters. Nevertheless, Temnodontosaurus differs from these other marine amniotes in the absence of pathologies in the vertebral column, consistent with the pattern previously documented in ichthyosaurs. We did not detect any instances of avascular necrosis in Temnodontosaurus from southern Germany, which may reflect a shallow diving life style. This study is intended to provide baseline data for the various types of observed pathologies in large ichthyosaurs occupying the 'apex predator' niche, and potentially clarifies aspects of species-specific behavior relative to other ichthyosaurs and marine amniotes.


Asunto(s)
Huesos/patología , Fósiles , Animales , Anquilosis/patología , Remodelación Ósea , Fracturas Óseas/patología , Alemania , Reptiles , Costillas/patología , Cráneo/patología , Cicatrización de Heridas
9.
PeerJ ; 6: e5033, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967726

RESUMEN

Dapedium is one of the most abundant and diverse genera of ganoid fishes from the Early Jurassic fossil lagerstätte of Europe. In spite of its abundance, however, its timing of extinction is poorly constrained, with the youngest described material being Early Jurassic in age. We describe new diagnostic and relatively complete material of a large species of Dapedium (standard length estimated at 50 cm) from the Middle Jurassic (earliest Aalenian) Opalinuston Formation of Baden-Württemberg, Germany. The Aalenian material represents a distinct species, D. ballei sp. nov., differing from Early Jurassic species in a unique combination of characters pertaining to the shape of the dermal skull elements, pectoral fin position, and scale shape and ornamentation. However, although D. ballei sp. nov. exhibits a unique combination of characters, there are no autapomorphies with which to distinguish it from the Toarcian species of Dapedium. Dapedium ballei represents the geologically youngest species of Dapedium, extending the range of this genus into the Middle Jurassic. The Opalinuston Formation fills an important gap in the marine vertebrate fossil record, and finds from this horizon have the potential to greatly improve our understanding of evolutionary dynamics over this period of faunal transition.

10.
Naturwissenschaften ; 104(5-6): 51, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28578532

RESUMEN

The Posidonienschiefer Formation (Toarcian) of Holzmaden, Baden-Württemberg in southwestern Germany has yielded several excellently preserved plesiosaurian specimens and received considerable research attention. The plesiosaurians found within these deposits are always significantly outnumbered by ichthyosaurs, and close examination of these rare specimens is crucial to a better understanding of the diversity and palaeoecology of Plesiosauria in this very peculiar ecosystem. The plesiosaurian specimen SMNS 51945 found in this area is a juvenile individual consisting of a partial, crushed skull and an exquisitely preserved post-cranial skeleton. Its anatomical characters seem to differ from the long-necked plesiosauroids Microcleidus brachypterygius and Seeleyosaurus guilelmiimperatoris that are the most abundant taxa within the plesiosaurian assemblage. The post-cranial skeleton preserves very likely soft tissues composed of buff-coloured and dark-coloured structures around the vertebral column and hindlimb of the animal. A network of buff-coloured fibres located posterior to the hindlimb most likely represents phosphatised collagen fibres as already found in some ichthyosaur specimens, confirming that wing area in plesiosaurians was much larger than that suggested by skeletal remains alone. The specimen also contains gastroliths (sand-sized grains mainly composed of quartz) in the stomach cavity suggesting the animal spent at least some of its time in shallow coastal waters, tens or hundreds of kilometres from the final place of burial.


Asunto(s)
Huesos/anatomía & histología , Fósiles , Filogenia , Reptiles/anatomía & histología , Reptiles/clasificación , Animales , Alemania
11.
Sci Rep ; 6: 18758, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26732746

RESUMEN

Current knowledge about the evolutionary morphology of the vertebrate gastrointestinal tract (GIT) is hindered by the low preservation potential of soft tissues in fossils. Exceptionally preserved cololites of individual †Saurichthys from the Middle Triassic of Switzerland provide unique insights into the evolutionary morphology of the GIT. The GIT of †Saurichthys differed from that of other early actinopterygians, and was convergent to that of some living sharks and rays, in exhibiting up to 30 turns of the spiral valve. Dissections and literature review demonstrate the phylogenetic diversity of GIT features and signs of biological factors that influence its morphology. A phylogenetically informed analysis of a dataset containing 134 taxa suggests that body size and phylogeny are important factors affecting the spiral valve turn counts. The high number of turns in the spiral valve of †Saurichthys and some recent sharks and rays reflect both energetically demanding lifestyles and the evolutionary histories of the groups.


Asunto(s)
Evolución Biológica , Peces/anatomía & histología , Fósiles , Tracto Gastrointestinal/anatomía & histología , Animales , Peces/clasificación , Filogenia
12.
PLoS One ; 10(11): e0141904, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26579712

RESUMEN

We explore the functional, developmental, and evolutionary processes which are argued to produce tooth reduction in the extinct marine reptile Stenopterygius quadriscissus (Reptilia: Ichthyosauria). We analyze the relationship between mandible growth and tooth size, shape, and count, to establish an ontogenetic trend. The pattern in S. quadriscissus is consistent with hypotheses of tooth size reduction by neutral selection, and this unusual morphology (a functionally edentulous rostrum) was produced by a series of different evolutionary developmental changes that are known for other taxa showing tooth reduction and loss. Specifically, this species evolved functional edentulism by evolutionary changes in the growth allometry of the dentition and by altering growth rates through ontogeny. This observation supports previous hypotheses that S. quadriscissus underwent ontogenetic tooth reduction. Tooth reduction in S. quadriscissus may be caused by unique selective pressures resulting from prey choice and feeding behavior, expanding our current understanding of the mechanisms producing tooth reduction.


Asunto(s)
Dentición , Reptiles/crecimiento & desarrollo , Diente/crecimiento & desarrollo , Animales , Conducta Alimentaria/fisiología , Flujo Genético , Mandíbula/crecimiento & desarrollo , Reptiles/anatomía & histología , Diente/anatomía & histología
13.
Biol Lett ; 11(7)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26156130

RESUMEN

The role of niche specialization and narrowing in the evolution and extinction of the ichthyosaurs has been widely discussed in the literature. However, previous studies have concentrated on a qualitative discussion of these variables only. Here, we use the recently developed approach of quantitative ecospace modelling to provide a high-resolution quantitative examination of the changes in dietary and ecological niche experienced by the ichthyosaurs throughout their evolution in the Mesozoic. In particular, we demonstrate that despite recent discoveries increasing our understanding of taxonomic diversity among the ichthyosaurs in the Cretaceous, when viewed from the perspective of ecospace modelling, a clear trend of ecological contraction is visible as early as the Middle Jurassic. We suggest that this ecospace redundancy, if carried through to the Late Cretaceous, could have contributed to the extinction of the ichthyosaurs. Additionally, our results suggest a novel model to explain ecospace change, termed the 'migration model'.


Asunto(s)
Evolución Biológica , Ecosistema , Extinción Biológica , Fósiles , Modelos Biológicos , Reptiles/clasificación , Animales , Océanos y Mares
14.
BMC Evol Biol ; 13: 265, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314064

RESUMEN

BACKGROUND: A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts. RESULTS: We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae. CONCLUSIONS: The preferential addition of abdominal vertebrae in fishes with an elongate body shape is consistent with the existence of a conservative positioning module formed by the boundary between the abdominal and caudal vertebral regions and the anterior insertion of the anal fin. Dissociation of this module is possible, although less probable than changes in the independently evolving abdominal region. Dissociation of the axial skeleton-median fin module leads to increased regionalization within the caudal vertebral column, something that has evolved several times in bony fishes, and may be homologous with the sacral region of tetrapods. These results suggest that modularity of the axial skeleton may result in somewhat predictable evolutionary outcomes in bony fishes.


Asunto(s)
Evolución Biológica , Rajidae/anatomía & histología , Rajidae/genética , Aletas de Animales , Animales , Fósiles , Perciformes/anatomía & histología , Perciformes/genética , Filogenia , Conducta Predatoria , Columna Vertebral/anatomía & histología , Vertebrados/anatomía & histología , Vertebrados/genética
15.
Nat Commun ; 4: 2570, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24096879

RESUMEN

Elongate body plans have evolved independently multiple times in vertebrates, and involve either an increase in the number or in the length of the vertebrae. Here, we describe a new mechanism of body elongation in saurichthyids, an extinct group of elongate early ray-finned fishes. The rare preservation of soft tissue in a specimen of Saurichthys curionii from the Middle Triassic (Ladinian) of Switzerland provides significant new information on the relationship between the musculature and the skeleton. This new fossil material shows that elongation in these fishes results from doubling the number of neural arch-like elements per myomeric segment. This unique way of generating an elongate body plan demonstrates the evolutionary lability of the vertebral column in non-teleostean fishes. The shape and arrangement of preserved myosepta suggest that S. curionii was not a highly flexible fish, in spite of the increase in the number of neural arch-like elements.


Asunto(s)
Aletas de Animales/anatomía & histología , Peces/anatomía & histología , Fósiles , Columna Vertebral/anatomía & histología , Aletas de Animales/fisiología , Animales , Evolución Biológica , Tipificación del Cuerpo/fisiología , Europa (Continente) , Peces/clasificación , Peces/fisiología , Sistema Nervioso/anatomía & histología , Filogenia , Columna Vertebral/fisiología
16.
PLoS One ; 7(8): e41692, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870244

RESUMEN

BACKGROUND: The Middle Jurassic was a critical time in the evolutionary history of ichthyosaurs. During this time interval, the diverse, well-studied faunas of the Lower Jurassic were entirely replaced by ophthalmosaurids, a new group that arose sometime prior to the Aalenian-Bajocian boundary and by the latest middle Jurassic comprised the only surviving group of ichthyosaurs. Thus, the Middle Jurassic Aalenian-Bathonian interval (176-165 million years ago) comprises the time frame during which ophthalmosaurids not only originated but also achieved taxonomic dominance. However, diagnostic ichthyosaur remains have been described previously from only a single locality from this interval, from the Bajocian of Argentina. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we describe a new species of ichthyosaur based on a partial articulated specimen from the Middle Jurassic of southwestern Germany. This specimen was recovered from the Opalinuston Formation (early Aalenian) and is referable to Stenopterygius aaleniensis sp. nov. reflecting features of the skull and forefin. The genus Stenopterygius is diverse and abundant in the Lower Jurassic of Europe, but its presence has not previously been confirmed in younger (Middle Jurassic) rocks from the northern hemisphere. CONCLUSIONS/SIGNIFICANCE: This specimen represents the only diagnostic ichthyosaur remains reported from the Aalenian. It bears numerous similarities in size and in morphology to the Lower Jurassic species of the genus Stenopterygius and provides additional evidence that the major ecological changes hypothesized to have occurred at the end of the Toarcian took place sometime after this point and most likely did not occur suddenly. There is currently no evidence for the presence of ophthalmosaurids in the northern hemisphere during the Aalenian-Bathonian interval.


Asunto(s)
Ecosistema , Fósiles , Reptiles , Animales , Alemania , Océanos y Mares , Reptiles/anatomía & histología , Reptiles/clasificación , Reptiles/fisiología
17.
J Exp Zool B Mol Dev Evol ; 318(7): 545-54, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22744735

RESUMEN

Adaptation to an aquatic habitat results in dramatic changes in tetrapod limb morphology as limbs take on the roles of propulsion and steering and lose their weight-bearing function. Changes include enclosure of the limb in a soft-tissue flipper and proportional lengthening of the distal limb, often accomplished through the addition of skeletal elements (hyperphalangy). The flipper structure itself and changes to the developmental architecture permitting hyperphalangy are hypothesized to increase observed limb variation, based on a cetacean model. These hypotheses are examined in the ichthyosaurs Stenopterygius and Mixosaurus. Hyperphalangy combined with high levels of variation in phalangeal counts were observed in both genera. The amount of variation was not proportional to the number of phalanges in a digit, but was related to functional digit length. In addition, qualitative variants were catalogued in both genera. Polyphalangy, phalangeal fusion, and additional ossifications in the zeugopodial row were not observed in Mixosaurus, but were common in Stenopterygius, even though both genera exhibited a similar degree of hyperphalangy. These results suggest that while the flipper structure and processes resulting in hyperphalangy may increase observed variation in phalangeal counts, these factors are unlikely to be causing high levels of qualitative variation in ichthyosaurs. Patterns of variation in ichthyosaur limbs, and thus variability, are unique to species but can change over evolutionary time.


Asunto(s)
Adaptación Biológica/fisiología , Evolución Biológica , Ecosistema , Extremidades/crecimiento & desarrollo , Fósiles , Reptiles/crecimiento & desarrollo , Animales , Pesos y Medidas Corporales , Extremidades/anatomía & histología , Alemania , Reptiles/anatomía & histología , Reptiles/clasificación , Especificidad de la Especie
18.
J Morphol ; 272(10): 1170-81, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21618268

RESUMEN

Few recent studies have examined the histological basis for tooth attachment in squamates. In the past few years, a surge of interest in this topic has led to the intriguing suggestion that the major tissues derived from the tooth germ (enamel, dentine, cementum and alveolar bone), are conservative and are present in all amniotes. In this study, we describe the histology and development of the tooth attachment complex in Varanus rudicollis, the rough-neck monitor. We provide the first published evidence for the role of cementum and alveolar bone in tooth attachment in varanoid lizards. In Varanus, cementum is deposited on the external surface of the tooth root as well as at the base of the tooth, where it plays a role in the attachment of the tooth to the jawbone. Alveolar bone is also involved in tooth ankylosis. Our results support the hypothesis that the major tooth germ tissues are found in all amniotes. We provide insights into the structure and development of plicidentine, defined as infolding of the dentine around the tooth base. This feature is unique to varanoids among extant tetrapods and is the third tissue implicated in tooth attachment in Varanus. Plicidentine develops asymmetrically along the labial-lingual axis of a tooth. Varanus is characterized by the presence of both primary and higher-order lamellae, which anastomose to form a honeycomb-like surface that then interacts with the more basal attachment tissues.


Asunto(s)
Dentina/ultraestructura , Lagartos/anatomía & histología , Diente/ultraestructura , Animales , Evolución Biológica , Cemento Dental/anatomía & histología , Cemento Dental/ultraestructura , Esmalte Dental/anatomía & histología , Esmalte Dental/ultraestructura , Fenómenos Fisiológicos de la Dentición , Diente/anatomía & histología , Alveolo Dental/anatomía & histología , Alveolo Dental/ultraestructura
19.
J Morphol ; 272(2): 129-35, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21210486

RESUMEN

Ichthyosaurs are an extinct group of secondarily aquatic reptiles that show ligamentous tooth attachment to the jaw in some derived forms. Here, we provide a modern description of tooth histology in ichthyosaurs, using Platypterygius australis, a large ichthyosaur from the Cretaceous of Australia. Our study supports evolutionary conservation of the principal mineralized tooth tissue types in amniotes with ligamentous tooth attachment: enamel, dentine, cellular, and acellular cementum. This is the first time that the latter tissue has been located in ichthyosaurs. Vascularized cementum (osteocementum) is reduced or absent in amniotes in which the teeth are ankylosed to the jaw bone, such as basal ichthyosaurs, and raises questions regarding the function of this tissue and the potential developmental or selective conditions leading to its convergent evolution.


Asunto(s)
Reptiles/anatomía & histología , Diente/anatomía & histología , Animales , Australia , Evolución Biológica , Cemento Dental/anatomía & histología , Dentina/anatomía & histología , Extinción Biológica , Diente/ultraestructura , Calcificación de Dientes
20.
Zoology (Jena) ; 113(1): 57-66, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20116981

RESUMEN

The evolution of developmental sequences, or sequence heterochrony, is an emerging field of study that addresses the temporal interplay between evolution and development. Some phylogenetic signal has been found in developmental sequence data, but sampling has generally been limited to small numbers of taxa and few developmental events. Here we present the largest ossification sequence dataset to date. The sequences are composed of ossification events throughout the avian skeleton, and are used to address the evolutionary signal of ossification sequence data within this clade. The results indicate that ossification sequences are conserved in birds, and show a stronger phylogenetic signal than previous studies, perhaps due to the volume of data. Phylogenetic signal is not strong enough, however, to consider ossification sequence data to be any better at resolving phylogenetic hypotheses than other morphological data and just as prone to evolutionary convergence. There is no one-to-one correlation between ossification sequence and developmental stage. We discuss some methodological implications of our findings, as well as commonalities in avian ossification sequences such as early ossification of the long bones relative to the dermatocranium, and of the hindlimb over the forelimb.


Asunto(s)
Evolución Biológica , Aves/clasificación , Huesos/anatomía & histología , Osteogénesis , Filogenia , Anatomía Comparada , Animales , Aves/anatomía & histología , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA