Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anat ; 232(6): 965-978, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29473159

RESUMEN

Spinal muscular atrophy (SMA), an autosomal recessive disease caused by a decrease in levels of the survival motor neuron (SMN) protein, is the most common genetic cause of infant mortality. Although neuromuscular pathology is the most severe feature of SMA, other organs and tissues, including the heart, are also known to be affected in both patients and animal models. Here, we provide new insights into changes occurring in the heart, predominantly at pre- and early symptomatic ages, in the Taiwanese mouse model of severe SMA. Thinning of the interventricular septum and dilation of the ventricles occurred at pre- and early symptomatic ages. However, the left ventricular wall was significantly thinner in SMA mice from birth, occurring prior to any overt neuromuscular symptoms. Alterations in collagen IV protein from birth indicated changes to the basement membrane and contributed to the abnormal arrangement of cardiomyocytes in SMA hearts. This raises the possibility that developmental defects, occurring prenatally, may contribute to cardiac pathology in SMA. In addition, cardiomyocytes in SMA hearts exhibited oxidative stress at pre-symptomatic ages and increased apoptosis during early symptomatic stages of disease. Heart microvasculature was similarly decreased at an early symptomatic age, likely contributing to the oxidative stress and apoptosis phenotypes observed. Finally, an increased incidence of blood retention in SMA hearts post-fixation suggests the likelihood of functional defects, resulting in blood pooling. These pathologies mirror dilated cardiomyopathy, with clear consequences for heart function that would likely contribute to potential heart failure. Our findings add significant additional experimental evidence in support of the requirement to develop systemic therapies for SMA capable of treating non-neuromuscular pathologies.


Asunto(s)
Cardiopatías/patología , Miocardio/patología , Atrofias Musculares Espinales de la Infancia/patología , Animales , Modelos Animales de Enfermedad , Corazón , Cardiopatías/etiología , Ratones , Atrofias Musculares Espinales de la Infancia/complicaciones
3.
Sci Rep ; 6: 34635, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698380

RESUMEN

Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA.


Asunto(s)
Hígado/crecimiento & desarrollo , Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Animales , Modelos Animales de Enfermedad , Humanos , Hígado/patología , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA