Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 23(7): 849-861, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27427231

RESUMEN

There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Sirtuina 2/antagonistas & inhibidores , Tiazoles/farmacología , Tiazoles/uso terapéutico , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Drosophila , Enfermedad de Huntington/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Ratas , Sirtuina 2/deficiencia , Sirtuina 2/metabolismo , Relación Estructura-Actividad , Tiazoles/química
2.
EMBO Mol Med ; 4(7): 557-60, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22610822

RESUMEN

From February 12-16, 2012, leading members of the sirtuin scientific community assembled in Tahoe, CA to attend the Keystone Symposium "Sirtuins in Aging, Metabolism, and Disease." It was a vibrant and lively meeting, and in the spirit of Keystone Symposia, both established sirtuin researchers and those new to the field enjoyed a unique opportunity to interact and exchange ideas.


Asunto(s)
Envejecimiento , Sirtuinas/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Sirtuinas/química , Sirtuinas/genética
3.
Hum Mol Genet ; 20(20): 3986-96, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21791548

RESUMEN

Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain.


Asunto(s)
Envejecimiento/metabolismo , Sistema Nervioso Central/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Sirtuina 2/metabolismo , Animales , Línea Celular Tumoral , Femenino , Regulación del Desarrollo de la Expresión Génica , Orden Génico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/genética , Isoformas de Proteínas/metabolismo , Sirtuina 2/genética
4.
ACS Chem Biol ; 6(6): 540-6, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21370928

RESUMEN

Sirtuin 2 (SIRT2) deacetylase-dependent inhibition mediates neuroprotective reduction of cholesterol biosynthesis in an in vitro Huntington's disease model. This study sought to identify the first brain-permeable SIRT2 inhibitor and to characterize its cholesterol-reducing properties in neuronal models. Using biochemical sirtuin deacetylation assays, we screened a brain-permeable in silico compound library, yielding 3-(1-azepanylsulfonyl)-N-(3-bromphenyl)benzamide as the most potent and selective SIRT2 inhibitor. Pharmacokinetic studies demonstrated brain-permeability but limited metabolic stability of the selected candidate. In accordance with previous observations, this SIRT2 inhibitor stimulated cytoplasmic retention of sterol regulatory element binding protein-2 and subsequent transcriptional downregulation of cholesterol biosynthesis genes, resulting in reduced total cholesterol in primary striatal neurons. Furthermore, the identified inhibitor reduced cholesterol in cultured naïve neuronal cells and brain slices from wild-type mice. The outcome of this study provides a clear opportunity for lead optimization and drug development, targeting metabolic dysfunctions in CNS disorders where abnormal cholesterol homeostasis is implicated.


Asunto(s)
Encéfalo/metabolismo , Colesterol/biosíntesis , Inhibidores Enzimáticos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sirtuina 2/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Ratones , Modelos Neurológicos , Estructura Molecular , Neuronas/enzimología , Permeabilidad , Sirtuina 2/metabolismo , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
5.
PLoS Curr ; 22010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20877454

RESUMEN

The family of histone deacetylases (HDACs) has recently emerged as important drug targets for treatment of slow progressive neurodegenerative disorders, including Huntington's disease (HD). Broad pharmaceutical inhibition of HDACs has shown neuroprotective effects in various HD models. Here we examined the susceptibility of HDAC targets for drug treatment in affected brain areas during HD progression. We observed increased HDAC1 and decreased HDAC4, 5 and 6 levels, correlating with disease progression, in cortices and striata of HD R6/2 mice. However, there were no significant changes in HDAC protein levels, assessed in an age-dependent manner, in HD knock-in CAG140 mice and we did not observe significant changes in HDAC1 levels in human HD brains. We further assessed acetylation levels of α-tubulin, as a biomarker of HDAC6 activity, and found it unchanged in cortices from R6/2, knock-in, and human subjects at all disease stages. Inhibition of deacetylase activities was identical in cortical extracts from R6/2 and wild-type mice treated with a class II-selective HDAC inhibitor. Lastly, treatment with class I- and II-selective HDAC inhibitors showed similar responses in HD and wild-type rat striatal cells. In conclusion, our results show that class I and class II HDAC targets are present and accessible for chronic drug treatment during HD progression and provide impetus for therapeutic development of brain-permeable class- or isoform-selective inhibitors.

6.
Proc Natl Acad Sci U S A ; 107(17): 7927-32, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20378838

RESUMEN

Huntington's disease (HD), an incurable neurodegenerative disorder, has a complex pathogenesis including protein aggregation and the dysregulation of neuronal transcription and metabolism. Here, we demonstrate that inhibition of sirtuin 2 (SIRT2) achieves neuroprotection in cellular and invertebrate models of HD. Genetic or pharmacologic inhibition of SIRT2 in a striatal neuron model of HD resulted in gene expression changes including significant down-regulation of RNAs responsible for sterol biosynthesis. Whereas mutant huntingtin fragments increased sterols in neuronal cells, SIRT2 inhibition reduced sterol levels via decreased nuclear trafficking of SREBP-2. Importantly, manipulation of sterol biosynthesis at the transcriptional level mimicked SIRT2 inhibition, demonstrating that the metabolic effects of SIRT2 inhibition are sufficient to diminish mutant huntingtin toxicity. These data identify SIRT2 inhibition as a promising avenue for HD therapy and elucidate a unique mechanism of SIRT2-inhibitor-mediated neuroprotection. Furthermore, the ascertainment of SIRT2's role in regulating cellular metabolism demonstrates a central function shared with other sirtuin proteins.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedad de Huntington/prevención & control , Fármacos Neuroprotectores/farmacología , Sirtuina 2/antagonistas & inhibidores , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Esteroles/biosíntesis , Análisis de Varianza , Animales , Western Blotting , Caenorhabditis elegans , Drosophila , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Microscopía Confocal
7.
Neuromuscul Disord ; 20(2): 111-21, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20080405

RESUMEN

Glucocorticoids are beneficial in many muscular dystrophies but they are ineffective in treating dysferlinopathy, a rare muscular dystrophy caused by loss of dysferlin. We sought to understand the molecular basis for this disparity by studying the effects of a glucocorticoid on differentiation of the myoblast cell line, C2C12, and dysferlin-deficient C2C12s. We found that pharmacologic doses of dexamethasone enhanced the myogenic fusion efficiency of C2C12s and increased the induction of dysferlin, along with specific myogenic transcription factors, sarcolemmal and structural proteins. In contrast, the dysferlin-deficient C2C12 cell line demonstrated a reduction in long myotubes and early induction of particular muscle differentiation proteins, most notably, myosin heavy chain. Dexamethasone partially reversed the defect in myogenic fusion in the dysferlin-deficient C2C12 cells. We hypothesize that a key therapeutic benefit of glucocorticoids may be the up-regulation of dysferlin as an important component of glucocorticoid-enhanced myogenic differentiation.


Asunto(s)
Dexametasona/farmacología , Proteínas de la Membrana/agonistas , Desarrollo de Músculos/efectos de los fármacos , Enfermedades Musculares/tratamiento farmacológico , Mioblastos/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Dexametasona/uso terapéutico , Relación Dosis-Respuesta a Droga , Disferlina , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/deficiencia , Ratones , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/efectos de los fármacos , Proteínas Musculares/metabolismo , Enfermedades Musculares/metabolismo , Enfermedades Musculares/fisiopatología , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/efectos de los fármacos , Cadenas Pesadas de Miosina/metabolismo , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
8.
Science ; 317(5837): 516-9, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17588900

RESUMEN

The sirtuins are members of the histone deacetylase family of proteins that participate in a variety of cellular functions and play a role in aging. We identified a potent inhibitor of sirtuin 2 (SIRT2) and found that inhibition of SIRT2 rescued alpha-synuclein toxicity and modified inclusion morphology in a cellular model of Parkinson's disease. Genetic inhibition of SIRT2 via small interfering RNA similarly rescued alpha-synuclein toxicity. Furthermore, the inhibitors protected against dopaminergic cell death both in vitro and in a Drosophila model of Parkinson's disease. The results suggest a link between neurodegeneration and aging.


Asunto(s)
Furanos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Quinolinas/farmacología , Sirtuinas/antagonistas & inhibidores , Sirtuinas/metabolismo , alfa-Sinucleína/metabolismo , Acetilación , Animales , Animales Modificados Genéticamente , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Dopamina/fisiología , Relación Dosis-Respuesta a Droga , Drosophila melanogaster , Humanos , Modelos Moleculares , Neuronas/citología , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Conformación Proteica , ARN Interferente Pequeño/genética , Ratas , Sirtuina 1 , Sirtuina 2 , Sirtuinas/química , Sirtuinas/genética , Transfección , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/genética
9.
J Biomol Screen ; 12(3): 351-60, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17379859

RESUMEN

CAG-triplet repeat extension, translated into polyglutamines within the coding frame of otherwise unrelated gene products, causes 9 incurable neurodegenerative disorders, including Huntington's disease. Although an expansion in the CAG repeat length is the autosomal dominant mutation that causes the fully penetrant neurological phenotypes, the repeat length is inversely correlated with the age of onset. The precise molecular mechanism(s) of neurodegeneration remains elusive, but compelling evidence implicates the protein or its proteolytic fragments as the cause for the gain of novel pathological function(s). The authors sought to identify small molecules that target the selective clearance of polypeptides containing pathological polyglutamine extension. In a high-throughput chemical screen, they identified compounds that facilitate the clearance of a small huntingtin fragment with extended polyglutamines fused to green fluorescent protein reporter. Identified hits were validated in dose-response and toxicity tests. Compounds have been further tested in an assay for clearance of a larger huntingtin fragment, containing either pathological or normal polyglutamine repeats. In this assay, the authors identified compounds selectively targeting the clearance of mutant but not normal huntingtin fragments. These compounds were subjected to a functional assay, which yielded a lead compound that rescues cells from induced mutant polyglutamine toxicity.


Asunto(s)
Evaluación Preclínica de Medicamentos , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Proteínas Fluorescentes Verdes/metabolismo , Peso Molecular , Células PC12 , Péptidos , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad por Sustrato
10.
J Biomol Screen ; 11(7): 729-35, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16928982

RESUMEN

Familial amyotrophic lateral sclerosis (ALS) accounts for 10% of all ALS cases; approximately 25% of these cases are due to mutations in the Cu/Zn superoxide dismutase gene (SOD1). To date, 105 different mutations spanning all 5 exons have been identified in the SOD1 gene. Mutant SOD1-associated ALS is caused by a toxic gain of function of the mutated protein. Therefore, regardless of the specific mechanism whereby mutant SOD1 initiates motor neuron death, the authors hypothesize that measures that decrease levels of mutant SOD1 protein should ameliorate the phenotype in transgenic mice and potentially in patients with SOD1-mediated disease. They have designed 2 cell-based screening assays to identify small, brain-permeant molecules that inactivate expression of the SOD1 gene or increase the degradation of the SOD1 protein. Here they describe the development and optimization of these assays and the results of high-throughput screening using a variety of compound libraries, including a total of more than 116,000 compounds. The majority of the hit compounds identified that down-regulated SOD1 were shown to be toxic in a cell-based viability assay or were nonselective transcription inhibitors, but work is continuing on a number of nonspecific inhibitors of SOD1 expression. Ultimately, the authors believe that these 2 cell-based assays will provide powerful strategies to identify novel therapies for the treatment of inherited SOD1-associated forms of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/enzimología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Superóxido Dismutasa/metabolismo , Animales , Línea Celular , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/química , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Proteínas Mutantes/metabolismo , Células PC12 , Regiones Promotoras Genéticas/genética , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Superóxido Dismutasa-1
11.
Chem Biol ; 13(7): 765-70, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16873024

RESUMEN

Poly (ADP-ribose) polymerase (PARP1) is a nuclear protein that, when overactivated by oxidative stress-induced DNA damage, ADP ribosylates target proteins leading to dramatic cellular ATP depletion. We have discovered a biologically active small-molecule inhibitor of PARP1. The discovered compound inhibited PARP1 enzymatic activity in vitro and prevented ATP loss and cell death in a surrogate model of oxidative stress in vivo. We also investigated a new use for PARP1 inhibitors in energy-deficient cells by using Huntington's disease as a model. Our results showed that insult with the oxidant hydrogen peroxide depleted cellular ATP in mutant cells below the threshold of viability. The protective role of PARP1 inhibitors against oxidative stress has been shown in this model system.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Adenosina Trifosfato/metabolismo , Western Blotting , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Modelos Moleculares
12.
Proc Natl Acad Sci U S A ; 103(11): 4246-51, 2006 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-16537516

RESUMEN

Misfolded proteins accumulate in many neurodegenerative diseases, including huntingtin in Huntington's disease and alpha-synuclein in Parkinson's disease. The disease-causing proteins can take various conformations and are prone to aggregate and form larger cytoplasmic or nuclear inclusions. One approach to the development of therapeutic intervention for these diseases has been to identify chemical compounds that reduce the size or number of inclusions. We have, however, identified a compound that promotes inclusion formation in cellular models of both Huntington's disease and Parkinson's disease. Of particular interest, this compound prevents huntingtin-mediated proteasome dysfunction and reduces alpha-synuclein-mediated toxicity. These results demonstrate that compounds that increase inclusion formation may actually lessen cellular pathology in both Huntington's and Parkinson's diseases, suggesting a therapeutic approach for neurodegenerative diseases caused by protein misfolding.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Cuerpos de Inclusión/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Piperazinas/farmacología , Quinolinas/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células CHO , Línea Celular , Cricetinae , ADN Recombinante/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Técnicas In Vitro , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/efectos de los fármacos , Proteínas Nucleares/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , alfa-Sinucleína/toxicidad
13.
Proc Natl Acad Sci U S A ; 102(3): 892-7, 2005 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-15642944

RESUMEN

Polyglutamine (polyQ) disorders, including Huntington's disease (HD), are caused by expansion of polyQ-encoding repeats within otherwise unrelated gene products. In polyQ diseases, the pathology and death of affected neurons are associated with the accumulation of mutant proteins in insoluble aggregates. Several studies implicate polyQ-dependent aggregation as a cause of neurodegeneration in HD, suggesting that inhibition of neuronal polyQ aggregation may be therapeutic in HD patients. We have used a yeast-based high-throughput screening assay to identify small-molecule inhibitors of polyQ aggregation. We validated the effects of four hit compounds in mammalian cell-based models of HD, optimized compound structures for potency, and then tested them in vitro in cultured brain slices from HD transgenic mice. These efforts identified a potent compound (IC50=10 nM) with long-term inhibitory effects on polyQ aggregation in HD neurons. Testing of this compound in a Drosophila HD model showed that it suppresses neurodegeneration in vivo, strongly suggesting an essential role for polyQ aggregation in HD pathology. The aggregation inhibitors identified in this screen represent four primary chemical scaffolds and are strong lead compounds for the development of therapeutics for human polyQ diseases.


Asunto(s)
Anilidas/farmacología , Enfermedad de Huntington/patología , Enfermedades Neurodegenerativas/prevención & control , Neuronas/patología , Péptidos/antagonistas & inhibidores , Hidrocarburos Policíclicos Aromáticos/farmacología , Sulfonamidas/farmacología , Animales , Encéfalo/patología , Dimerización , Modelos Animales de Enfermedad , Drosophila , Enfermedad de Huntington/metabolismo , Concentración 50 Inhibidora , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Relación Estructura-Actividad
14.
Proc Natl Acad Sci U S A ; 101(9): 3178-83, 2004 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-14981234

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disorder resulting from selective death of motor neurons in the brain and spinal cord. In approximately 25% of familial ALS cases, the disease is caused by dominantly acting point mutations in the gene encoding cytosolic Cu,Zn superoxide dismutase (SOD1). In cell culture and in rodent models of ALS, mutant SOD1 proteins exhibit dose-dependent toxicity; thus, agents that reduce mutant protein expression would be powerful therapeutic tools. A wealth of recent evidence has demonstrated that the mechanism of RNA-mediated interference (RNAi) can be exploited to achieve potent and specific gene silencing in vitro and in vivo. We have evaluated the utility of RNAi for selective silencing of mutant SOD1 expression in cultured cells and have identified small interfering RNAs capable of specifically inhibiting expression of ALS-linked mutant, but not wild-type, SOD1. We have investigated the functional effects of RNAi-mediated silencing of mutant SOD1 in cultured murine neuroblastoma cells. In this model, stable expression of mutant, but not wild-type, human SOD1 sensitizes cells to cytotoxic stimuli. We find that silencing of mutant SOD1 protects these cells against cyclosporin A-induced cell death. These results demonstrate a positive physiological effect caused by RNAi-mediated silencing of a dominant disease allele. The present study further supports the therapeutic potential of RNAi-based methods for the treatment of inherited human diseases, including ALS.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ciclosporina/toxicidad , Silenciador del Gen , Neuroblastoma/genética , ARN Interferente Pequeño/genética , Superóxido Dismutasa/genética , Secuencia de Bases , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , Cartilla de ADN , ADN Complementario/genética , Células HeLa , Humanos , Enfermedad de la Neurona Motora/genética , Mutagénesis Sitio-Dirigida , Neuroblastoma/patología , Superóxido Dismutasa-1 , Transfección , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...