Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(3)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38195178

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease leading to dysfunction and loss of insulin-secreting ß cells. In ß cells, polyamines have been implicated in causing cellular stress and dysfunction. An inhibitor of polyamine biosynthesis, difluoromethylornithine (DFMO), has been shown to delay T1D in mouse models and preserve ß-cell function in humans with recent-onset T1D. Another small molecule, N1,N11-diethylnorspermine (DENSpm), both inhibits polyamine biosynthesis and accelerates polyamine metabolism and is being tested for efficacy in cancer clinical trials. In this study, we show that DENSpm depletes intracellular polyamines as effectively as DFMO in mouse ß cells. RNA-sequencing analysis, however, suggests that the cellular responses to DENSpm and DFMO differ, with both showing effects on cellular proliferation but the latter showing additional effects on mRNA translation and protein-folding pathways. In the low-dose streptozotocin-induced mouse model of T1D, DENSpm, unlike DFMO, did not prevent or delay diabetes outcomes but did result in improvements in glucose tolerance and reductions in islet oxidative stress. In nonobese diabetic (NOD) mice, short-term DENSpm administration resulted in a slight reduction in insulitis and proinflammatory Th1 cells in the pancreatic lymph nodes. Longer term treatment resulted in a dose-dependent increase in mortality. Notwithstanding the efficacy of both DFMO and DENSpm in reducing potentially toxic polyamine levels in ß cells, our results highlight the discordant T1D outcomes that result from differing mechanisms of polyamine depletion and, more importantly, that toxic effects of DENSpm may limit its utility in T1D treatment.


Asunto(s)
Antineoplásicos , Diabetes Mellitus Tipo 1 , Humanos , Animales , Ratones , Poliaminas/metabolismo , Eflornitina/farmacología , Eflornitina/uso terapéutico , Antineoplásicos/farmacología , Espermina/farmacología , Espermina/metabolismo , Citocinas , Diabetes Mellitus Tipo 1/tratamiento farmacológico
2.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37373143

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Carcinoma Hepatocelular/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Modelos Animales de Enfermedad
3.
STAR Protoc ; 4(1): 101938, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36520629

RESUMEN

Investigating the immune attack on ß cells is critical to understanding autoimmune diabetes. Here, we present a protocol to isolate immune cells from mouse pancreatic lymph nodes and whole pancreas, followed by mass cytometric analyses. This protocol can be used to analyze subsets of innate and adaptive immune cells that play critical roles in autoimmune diabetes, with as few as 5 × 105 cells. This protocol can also be adapted to study resident immune cells from other tissues. For complete details on the use and execution of this protocol, please refer to Piñeros et al. (2022).1.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animales , Ratones , Páncreas , Hormonas Pancreáticas , Ganglios Linfáticos
4.
J Clin Transl Sci ; 7(1): e263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38229904

RESUMEN

Stress and diabetes coexist in a vicious cycle. Different types of stress lead to diabetes, while diabetes itself is a major life stressor. This was the focus of the Chicago Biomedical Consortium's 19th annual symposium, "Stress and Human Health: Diabetes," in November 2022. There, researchers primarily from the Chicago area met to explore how different sources of stress - from the cells to the community - impact diabetes outcomes. Presenters discussed the consequences of stress arising from mutant proteins, obesity, sleep disturbances, environmental pollutants, COVID-19, and racial and socioeconomic disparities. This symposium showcased the latest diabetes research and highlighted promising new treatment approaches for mitigating stress in diabetes.

5.
Endocrinology ; 164(1)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36317483

RESUMEN

The pathogeneses of the 2 major forms of diabetes, type 1 and type 2, differ with respect to their major molecular insults (loss of immune tolerance and onset of tissue insulin resistance, respectively). However, evidence suggests that dysfunction and/or death of insulin-producing ß-cells is common to virtually all forms of diabetes. Although the mechanisms underlying ß-cell dysfunction remain incompletely characterized, recent years have witnessed major advances in our understanding of the molecular pathways that contribute to the demise of the ß-cell. Cellular and environmental factors contribute to ß-cell dysfunction/loss through the activation of molecular pathways that exacerbate endoplasmic reticulum stress, the integrated stress response, oxidative stress, and impaired autophagy. Whereas many of these stress responsive pathways are interconnected, their individual contributions to glucose homeostasis and ß-cell health have been elucidated through the development and interrogation of animal models. In these studies, genetic models and pharmacological compounds have enabled the identification of genes and proteins specifically involved in ß-cell dysfunction during diabetes pathogenesis. Here, we review the critical stress response pathways that are activated in ß cells in the context of the animal models.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células Secretoras de Insulina , Animales , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Autofagia/fisiología , Estrés Oxidativo
6.
J Biol Chem ; 298(9): 102333, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926711

RESUMEN

During reverse cholesterol transport, high-density lipoprotein (HDL) carries excess cholesterol from peripheral cells to the liver for excretion in bile. The first and last steps of this pathway involve the HDL receptor, scavenger receptor BI (SR-BI). While the mechanism of SR-BI-mediated cholesterol transport has not yet been established, it has long been suspected that cholesterol traverses through a hydrophobic tunnel in SR-BI's extracellular domain. Confirmation of a hydrophobic tunnel is hindered by the lack of a full-length SR-BI structure. Part of SR-BI's structure has been resolved, encompassing residues 405 to 475, which includes the C-terminal transmembrane domain and its adjacent extracellular region. Within the extracellular segment is an amphipathic helix (residues 427-436, referred to as AH(427-436)) that showed increased protection from solvent in NMR-based studies. Homology models predict that hydrophobic residues in AH(427-436) line a core cavity in SR-BI's extracellular region that may facilitate cholesterol transport. Therefore, we hypothesized that hydrophobic residues in AH(427-436) are required for HDL cholesterol transport. Here, we tested this hypothesis by mutating individual residues along AH(427-436) to a charged residue (aspartic acid), transiently transfecting COS-7 cells with plasmids encoding wild-type and mutant SR-BI, and performing functional analyses. We found that mutating hydrophobic, but not hydrophilic, residues in AH(427-436) impaired SR-BI bidirectional cholesterol transport. Mutating phenylalanine-430 was particularly detrimental to SR-BI's functions, suggesting that this residue may facilitate important interactions for cholesterol delivery within the hydrophobic tunnel. Our results support the hypothesis that a hydrophobic tunnel within SR-BI mediates cholesterol transport.


Asunto(s)
HDL-Colesterol , Lipoproteínas HDL , Receptores de Lipoproteína , Receptores Depuradores de Clase B , Ácido Aspártico/química , Ácido Aspártico/genética , Transporte Biológico , Antígenos CD36/química , HDL-Colesterol/química , HDL-Colesterol/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/genética , Fenilalanina/química , Fenilalanina/genética , Conformación Proteica en Hélice alfa , Receptores de Lipoproteína/química , Receptores de Lipoproteína/genética , Receptores Depuradores de Clase B/química , Receptores Depuradores de Clase B/genética , Solventes
7.
Arterioscler Thromb Vasc Biol ; 41(11): 2708-2725, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34551590

RESUMEN

Objective: To investigate the role of adipocyte Pcpe2 (procollagen C-endopeptidase enhancer 2) in SR-BI (scavenger receptor class BI)-mediated HDL-C (high-density lipoprotein cholesterol) uptake and contributions to adipose lipid storage. Approach and Results: Pcpe2, a glycoprotein devoid of intrinsic proteolytic activity, is believed to participate in extracellular protein-protein interactions, supporting SR-BI- mediated HDL-C uptake. In published studies, Pcpe2 deficiency increased the development of atherosclerosis by reducing SR-BI-mediated HDL-C catabolism, but the biological impact of this deficiency on adipocyte SR-BI-mediated HDL-C uptake is unknown. Differentiated cells from Ldlr-/-/Pcpe2-/- (Pcpe2-/-) mouse adipose tissue showed elevated SR-BI protein levels, but significantly reduced HDL-C uptake compared to Ldlr-/- (control) adipose tissue. SR-BI-mediated HDL-C uptake was restored by preincubation of cells with exogenous Pcpe2. In diet-fed mice lacking Pcpe2, significant reductions in visceral, subcutaneous, and brown adipose tissue mass were observed, despite elevations in plasma triglyceride and cholesterol concentrations. Significant positive correlations exist between adipose mass and Pcpe2 expression in both mice and humans. Conclusions: Overall, these findings reveal a novel and unexpected function for Pcpe2 in modulating SR-BI expression and function as it relates to adipose tissue expansion and cholesterol balance in both mice and humans.


Asunto(s)
Adipocitos/metabolismo , Aterosclerosis/metabolismo , HDL-Colesterol/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microdominios de Membrana/metabolismo , Obesidad/metabolismo , Receptores Depuradores de Clase B/metabolismo , Grasa Subcutánea/metabolismo , Adipocitos/patología , Adipogénesis , Adiposidad , Adulto , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Células CHO , Caveolina 1/metabolismo , Cricetulus , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Glicoproteínas/genética , Humanos , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Microdominios de Membrana/genética , Microdominios de Membrana/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética , Obesidad/patología , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores Depuradores de Clase B/genética , Grasa Subcutánea/patología
8.
J Lipid Res ; 62: 100045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33577783

RESUMEN

HDL and its primary receptor, scavenger receptor class B type I (SR-BI), work together to promote the clearance of excess plasma cholesterol, thereby protecting against atherosclerosis. Human variants of SR-BI have been identified in patients with high HDL-cholesterol levels, and at least one variant has been linked to cardiovascular disease. Therefore, while often regarded as beneficial, very high levels of HDL-cholesterol may result from impaired cholesterol clearance through SR-BI and contribute to cardiovascular risk. In this study, we characterized the function of a rare human variant of SR-BI, resulting in the substitution of arginine-174 with cysteine (R174C), which was previously identified in a heterozygous individual with high levels of HDL-cholesterol. We hypothesized that the R174C-SR-BI variant has impaired cholesterol transport functions, which were assessed in COS-7 cells after transient transfection with full-length WT or R174C-SR-BI. Although R174C-SR-BI was expressed at levels comparable to the WT receptor, HDL binding, cholesteryl hexadecyl ether uptake, free cholesterol efflux, and modulation of membrane cholesterol were disrupted in the presence of R174C-SR-BI. We further examined the role of salt bridges as a potential mechanism for R174C-SR-BI dysfunction. If translatable, this human variant could lead to increased plasma HDL-cholesterol levels, impaired cholesterol clearance, and increased cardiovascular disease risk.


Asunto(s)
Receptores Depuradores , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...