Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37886443

RESUMEN

Brain tumor patients are commonly treated with radiotherapy, but the efficacy of the treatment is limited by its toxicity, particularly the risk of radionecrosis. We used human cerebral organoids to investigate the mechanisms and nature of postirradiation brain image changes commonly linked to necrosis. Irradiation of cerebral organoids lead to increased formation of ZO1+/AQP1+/CLN3+-choroid plexus (CP) structures. Increased CP formation was triggered by radiation via the NOTCH/WNT signaling pathways and associated with delayed growth and neural stem cell differentiation, but not necrosis. The effect was more pronounced in immature than in mature organoids, reflecting the clinically-observed increased radiosensitivity of the pediatric brain. Protons were more effective than X-rays at the same dose, as also observed in clinical treatments. We conclude that radiation-induced brain image-changes can be attributed to aberrant CP formation, providing a new cellular mechanism and strategy for possible countermeasures.

2.
Neurotoxicology ; 79: 40-47, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32320710

RESUMEN

Ionizing radiation (IR) is increasingly used for diagnostics and therapy of severe brain diseases. However, IR also has adverse effects on the healthy brain tissue, particularly on the neuronal network. This is true for adults but even more pronounced in the developing brain of unborn and pediatric patients. Epidemiological studies on children receiving radiotherapy showed an increased risk for cognitive decline ranging from mild deficits in academic functioning to severe late effects in intellectual ability and language as a consequence of altered neuronal development and connectivity. To provide a comprehensive approach for the analysis of radiation-induced alterations in human neuronal functionality, we developed an in vitro assay by combining microelectrode array (MEA) analyses and human embryonic stem cell (hESC) derived three-dimensional neurospheres (NS). In our proof of principle study, we irradiated hESC with 1 Gy X-rays and let them spontaneously differentiate into neurons within NS. After the onset of neuronal activity, we recorded and analyzed the activity pattern of the developing neuronal networks. The network activity in NS derived from irradiated hESC was significantly reduced, whereas no differences in molecular endpoints such as cell proliferation and transcript or protein expression analyses were found. Thus, the combination of MEA analysis with a 3D model for neuronal functionality revealed radiation sequela that otherwise would not have been detected. We therefore strongly suggest combining traditional biomolecular methods with the new functional assay presented in this work to improve the risk assessment for IR-induced effects on the developing brain.


Asunto(s)
Células Madre Embrionarias Humanas/efectos de la radiación , Red Nerviosa/efectos de la radiación , Células-Madre Neurales/efectos de la radiación , Neurogénesis/efectos de la radiación , Potenciales de Acción/efectos de los fármacos , Técnicas de Cultivo de Célula/instrumentación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Células Madre Embrionarias Humanas/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Red Nerviosa/metabolismo , Células-Madre Neurales/metabolismo , Fenotipo , Prueba de Estudio Conceptual , Esferoides Celulares
3.
Biosens Bioelectron ; 100: 462-468, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28963963

RESUMEN

Microelectrode array (MEA) technology in combination with three-dimensional (3D) neuronal cell models derived from human embryonic stem cells (hESC) provide an excellent tool for neurotoxicity screening. Yet, there are significant challenges in terms of data processing and analysis, since neuronal signals have very small amplitudes and the 3D structure enhances the level of background noise. Thus, neuronal signal analysis requires the application of highly sophisticated algorithms. In this study, we present a new approach optimized for the detection of spikes recorded from 3D neurospheres (NS) with a very low signal-to-noise ratio. This was achieved by extending simple threshold-based spike detection utilizing a highly sensitive algorithm named SWTTEO. This analysis procedure was applied to data obtained from hESC-derived NS grown on MEA chips. Specifically, we examined changes in the activity pattern occurring within the first ten days of electrical activity. We further analyzed the response of NS to the GABA receptor antagonist bicuculline. With this new algorithm method we obtained more reliable results compared to the simple threshold-based spike detection.


Asunto(s)
Potenciales de Acción , Células Madre Embrionarias Humanas/citología , Red Nerviosa , Neuronas/citología , Algoritmos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular , Fenómenos Electrofisiológicos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Microelectrodos , Neurogénesis , Neuronas/metabolismo
4.
PLoS One ; 11(5): e0155093, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27163610

RESUMEN

Ionizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA) showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system.


Asunto(s)
Apoptosis/efectos de la radiación , Fase G1/efectos de la radiación , Fase G2/efectos de la radiación , Puntos de Control de la Fase M del Ciclo Celular/efectos de la radiación , Retina/efectos de la radiación , Factores de Edad , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de la radiación , Embrión de Pollo , Relación Dosis-Respuesta en la Radiación , Expresión Génica , Histonas/genética , Histonas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Retina/citología , Retina/metabolismo , Factores de Tiempo , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA