Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 20(12): e3001923, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542664

RESUMEN

The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERRß, ERRγ or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control.


Asunto(s)
Neuronas Motoras gamma , Receptores de Estrógenos , Animales , Ratones , Neuronas Motoras gamma/fisiología , Movimiento , Músculos , Propiocepción , Receptores de Estrógenos/metabolismo
2.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764190

RESUMEN

Safe and efficient locomotion relies on placing the foot on a reliable surface at the end of each leg swing movement. Visual information has been shown to be important for determining the location of foot placement in humans during walking when precision is required. Yet in quadrupedal animals where the hindlimbs are outside of the visual field, such as in mice, the mechanisms by which precise foot placement is achieved remain unclear. Here we show that the placement of the hindlimb paw is determined by the position of the forelimb paw during normal locomotion and in the presence of perturbations. When a perturbation elicits a stumbling corrective reaction, we found that the forelimb paw shifts posteriorly relative to body at the end of stance, and this spatial shift is echoed in hindlimb paw placement at the end of the swing movement. Using a mutant mouse line in which muscle spindle feedback is selectively removed, we show that this posterior shift of paw placement is dependent on muscle spindle feedback in the hindlimb but not in the forelimb. These findings uncover a neuronal mechanism that is independent of vision to ensure safe locomotion during perturbation. This mechanism adds to our general knowledge of how the nervous system controls targeted limb movements and could inform the development of autonomous walking machines.


Asunto(s)
Miembro Anterior , Husos Musculares , Animales , Retroalimentación , Miembro Posterior , Locomoción , Ratones , Movimiento
3.
Histochem Cell Biol ; 156(6): 583-594, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34476549

RESUMEN

Orthosis immobilisations are routinely used in orthopaedic procedures. This intervention is applicable in bone fractures, ligament injuries, and tendonitis, among other disorders of the musculoskeletal system. We aimed to evaluate the effects of ankle joint functional immobilisation on muscle fibre morphology, connective tissue, muscle spindle and fibre typification triggered by a novel metallic orthosis. We developed a rodent-proof experimental orthosis able to hold the tibiotalar joint in a functional position for short and long terms. The tibialis anterior muscles of free and immobilised legs were collected and stained by histology and histochemistry techniques to investigate general muscle morphology, connective tissue and muscle fibre typification. Morphometric analysis of muscle cross-section area, fibre type cross-section area, fibre type density, percentage of intramuscular connective tissue, and thickness of the muscle spindle capsule were obtained to gain insights into the experimental protocol. We found that short- and long-term immobilisation decreased the cross-section area of the muscles and induced centralisation of myonuclei. The connective tissue of immobilised muscle increased after 2 and 4 weeks mainly by deposition of type III and type I collagen fibres in the perimysium and endomysium, respectively, in addition to muscle spindle capsule thickening. Type IIB muscle fibre was severely affected in our study; the profile assumed odd shapes, and our data suggest interconversion of these fibre types within long-term immobilisation. In conclusion, our protocol has produced structural and histochemical changes in muscle biology. This method might be applied to various rodent models that enable genetic manipulation for the investigation of muscle degeneration/regeneration processes.


Asunto(s)
Tejido Conectivo/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Husos Musculares/metabolismo , Animales , Articulación del Tobillo , Histocitoquímica , Masculino , Fibras Musculares Esqueléticas/citología , Husos Musculares/citología , Ratas , Ratas Wistar
4.
Behav Brain Res ; 369: 111914, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31022419

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) death that leads to muscle weakness, paralysis, and eventually death. When symptoms become clinically evident, patients and ALS model animals (mSod1G93A mice) have already lost a large portion of motor units, suggesting the existence of a compensatory mechanism that allows for reactively normal movement despite denervation. Furthermore, it has been shown that specialized cholinergic synapses, the C-boutons, regulate activity strength of motor output in a task dependent manner. We hypothesized that the cholinergic modulation of motor neurons through C-boutons increases motor neuron excitability, and that this C-bouton associated activity increase in surviving motor neurons could compensate for motor unit loss during ALS disease progression. We first provide a thorough analysis of the muscle denervation and behavioral changes in the mSod1G93A mice using immunohistology, electrophysiology, and quantitative analysis of locomotor behavior. Then, in support of our hypothesis, we show that task dependent modulation of hindlimb muscle activation that relies on C-bouton activation diminishes as the disease progresses. Furthermore, the capability of mSod1G93A mice to walk at higher speeds on a treadmill decreases significantly at younger ages when C-boutons are silenced. Our observations that C-bouton modulation of motor neurons is involved in compensation during ALS disease progression can have significant therapeutic implications for sustaining mobility and preserving the quality of life in human ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Neuronas Colinérgicas/fisiología , Interneuronas/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Acetilcolina/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Neuronas Colinérgicas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Interneuronas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Unión Neuromuscular/patología , Unión Neuromuscular/fisiología , Receptor Muscarínico M2/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
5.
J Physiol ; 597(12): 3147-3165, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30916787

RESUMEN

KEY POINTS: Locomotion on land and in water requires the coordination of a great number of muscle activations and joint movements. Constant feedback about the position of own body parts in relation to the surrounding environment and the body itself (proprioception) is required to maintain stability and avoid failure. The central nervous system may follow a modular type of organization by controlling muscles in orchestrated groups (muscle synergies) rather than individually. We used this concept on genetically modified mice lacking muscle spindles, one of the two main classes of proprioceptors. We provide evidence that proprioceptive feedback is required by the central nervous system to accurately tune the modular organization of locomotion. ABSTRACT: For exploiting terrestrial and aquatic locomotion, vertebrates must build their locomotor patterns based on an enormous amount of variables. The great number of muscles and joints, together with the constant need for sensory feedback information (e.g. proprioception), make the task of controlling movement a problem with overabundant degrees of freedom. It is widely accepted that the central nervous system may simplify the creation and control of movement by generating activation patterns common to muscle groups, rather than specific to individual muscles. These activation patterns, called muscle synergies, describe the modular organization of movement. We extracted synergies through electromyography from the hind limb muscle activities of wild-type and genetically modified mice lacking sensory feedback from muscle spindles. Muscle spindle-deficient mice underwent a modification of the temporal structure (motor primitives) of muscle synergies that resulted in diminished functionality during walking. In addition, both the temporal and spatial (motor modules) components of synergies were severely affected when external perturbations were introduced or when animals were immersed in water. These findings show that sensory feedback from group Ia/II muscle spindles regulates motor function in normal and perturbed walking. Moreover, when group Ib Golgi tendon organ feedback is lacking due to enhanced buoyancy, the modular organization of swimming is almost completely compromised.


Asunto(s)
Retroalimentación Sensorial , Locomoción/fisiología , Husos Musculares/fisiología , Animales , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Femenino , Miembro Posterior , Masculino , Ratones Noqueados
6.
J Neurophysiol ; 120(5): 2484-2497, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133381

RESUMEN

Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying how this speed-dependent amplitude modulation is achieved remains obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors that signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno-associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed-dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, is the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed-dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases. NEW & NOTEWORTHY Animals upregulate the activity of extensor muscles to increase their walking speed, but the mechanism behind this is not known. We show that this speed-dependent amplitude modulation requires proprioceptive sensory feedback from muscle spindles of ankle extensor muscle. In the absence of muscle spindle feedback, animals cannot walk at higher speeds as they can when muscle spindle feedback is present.


Asunto(s)
Retroalimentación Sensorial , Husos Musculares/fisiología , Caminata/fisiología , Animales , Femenino , Masculino , Ratones , Contracción Muscular , Husos Musculares/inervación , Propiocepción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...