Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 152(19): 194705, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33687247

RESUMEN

A fully microscopic model of the doping-dependent exciton and trion linewidths in the absorption spectra of monolayer transition metal dichalcogenides in the low temperature and low-doping regime is explored. The approach is based on perturbation theory and avoids the use of phenomenological parameters. In the low-doping regime, we find that the trion linewidth is relatively insensitive to doping levels, while the exciton linewidth increases monotonically with doping. On the other hand, we argue that the trion linewidth shows a somewhat stronger temperature dependence. The magnitudes of the linewidths are likely to be masked by phonon scattering for T ≥ 20 K in encapsulated samples in the low-doping regime. We discuss the breakdown of perturbation theory, which should occur at relatively low-doping levels and low temperatures. Our work also paves the way toward understanding a variety of related scattering processes, including impact ionization and Auger scattering in clean 2D samples.

2.
Nano Lett ; 18(12): 8041-8046, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30387614

RESUMEN

Here we develop a microscopic approach aimed at the description of a suite of physical effects related to carrier transport in, and the optical properties of, halide perovskites. Our theory is based on the description of the nuclear dynamics to all orders and goes beyond the common assumption of linear electron-phonon coupling in describing the carrier dynamics and band gap characteristics. When combined with first-principles calculations and applied to the prototypical MAPbI3 system, our theory explains seemingly disparate experimental findings associated with both the charge-carrier mobility and optical absorption properties, including their temperature dependencies. Our findings demonstrate that orbital-overlap fluctuations in the lead-halide structure plays a significant role in determining the optoelectronic features of halide perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA