Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 11(9): 820-6, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20657597

RESUMEN

Activation-induced cytidine deaminase (AID) is required for somatic hypermutation and immunoglobulin class switching in activated B cells. Because AID has no known target-site specificity, there have been efforts to identify non-immunoglobulin AID targets. We show here that AID acts promiscuously, generating widespread DNA double-strand breaks (DSBs), genomic instability and cytotoxicity in B cells with less homologous recombination ability. We demonstrate that the homologous-recombination factor XRCC2 suppressed AID-induced off-target DSBs, promoting B cell survival. Finally, we suggest that aberrations that affect human chromosome 7q36, including XRCC2, correlate with genomic instability in B cell cancers. Our findings demonstrate that AID has promiscuous genomic DSB-inducing activity, identify homologous recombination as a safeguard against off-target AID action, and have implications for genomic instability in B cell cancers.


Asunto(s)
Citidina Desaminasa/metabolismo , Roturas del ADN , Recombinación Genética/genética , Linfocitos B/inmunología , Ciclo Celular , Supervivencia Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Citometría de Flujo , Inestabilidad Genómica , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
J Bone Miner Res ; 25(9): 2059-68, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20499371

RESUMEN

Insulin-like growth factor 1 (IGF-1) is a crucial mediator of body size and bone mass during growth and development. In serum, IGF-1 is stabilized by several IGF-1-binding proteins (IGFBPs) and the acid labile subunit (ALS). Previous research using ALS knockout (ALSKO) mice indicated a growth retardation phenotype, and clinical reports of humans have indicated short stature and low bone mineral density (BMD) in patients with ALS deficiency. To determine the temporal and sex-specific effects of ALS deficiency on body size and skeletal development during growth, we characterized control and ALSKO mice from 4 to 16 weeks of age. We found that female ALSKO mice had an earlier-onset reduction in body size (4 weeks) but that both female and male ALSKO mice were consistently smaller than control mice. Interestingly, skeletal analyses at multiple ages showed increased slenderness of ALSKO femurs that was more severe in females than in males. Both male and female ALSKO mice appeared to compensate for their more slender bones through increased bone formation on their endosteal surfaces during growth, but ALSKO females had increased endosteal bone formation compared with ALSKO males. This study revealed age- and sex-specific dependencies of body size and bone size on the ALS. These findings may explain the heterogeneity in growth and BMD measurements reported in human ALS-deficient patients.


Asunto(s)
Tamaño Corporal , Huesos/anatomía & histología , Somatomedinas/genética , Animales , Femenino , Masculino , Ratones
3.
J Endocrinol ; 204(3): 241-53, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20032200

RESUMEN

A spontaneous mouse mutant, designated 'small' (sml), was recognized by reduced body size suggesting a defect in the IGF1/GH axis. The mutation was mapped to the chromosome 1 region containing Irs1, a viable candidate gene whose sequence revealed a single nucleotide deletion resulting in a premature stop codon. Despite normal mRNA levels in mutant and control littermate livers, western blot analysis revealed no detectable protein in mutant liver lysates. When compared with the control littermates, Irs1(sml)/Irs1(sml) (Irs1(sml/sml)) mice were small, lean, hearing impaired; had 20% less serum IGF1; were hyperinsulinemic; and were mildly insulin resistant. Irs1(sml/sml) mice had low bone mineral density, reduced trabecular and cortical thicknesses, and low bone formation rates, while osteoblast and osteoclast numbers were increased in the females but not different in the males compared with the Irs1(+/+) controls. In vitro, Irs1(sml/sml) bone marrow stromal cell cultures showed decreased alkaline phosphatase-positive colony forming units (pre-osteoblasts; CFU-AP+) and normal numbers of tartrate-resistant acid phosphatase-positive osteoclasts. Irs1(sml/sml) stromal cells treated with IGF1 exhibited a 50% decrease in AKT phosphorylation, indicative of defective downstream signaling. Similarities between engineered knockouts and the spontaneous mutation of Irs1(sml) were identified as well as significant differences with respect to heterozygosity and gender. In sum, we have identified a spontaneous mutation in the Irs1 gene associated with a major skeletal phenotype. Changes in the heterozygous Irs1(+)(/sml) mice raise the possibility that similar mutations in humans are associated with short stature or osteoporosis.


Asunto(s)
Adipogénesis , Densidad Ósea , Hiperinsulinismo/genética , Proteínas Sustrato del Receptor de Insulina/genética , Ratones/crecimiento & desarrollo , Ratones/genética , Mutación , Animales , Desarrollo Óseo , Huesos/metabolismo , Huesos/fisiopatología , Células Cultivadas , Femenino , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones/metabolismo , Osteoclastos/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA