Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456462

RESUMEN

The physical basis of phase separation is thought to consist of the same types of bonds that specify conventional macromolecular interactions yet is unsatisfyingly often referred to as 'fuzzy'. Gaining clarity on the biogenesis of membraneless cellular compartments is one of the most demanding challenges in biology. Here, we focus on the chromosome passenger complex (CPC), that forms a chromatin body that regulates chromosome segregation in mitosis. Within the three regulatory subunits of the CPC implicated in phase separation - a heterotrimer of INCENP, Survivin, and Borealin - we identify the contact regions formed upon droplet formation using hydrogen/deuterium exchange mass spectrometry (HXMS). These contact regions correspond to some of the interfaces seen between individual heterotrimers within the crystal lattice they form. A major contribution comes from specific electrostatic interactions that can be broken and reversed through initial and compensatory mutagenesis, respectively. Our findings reveal structural insight for interactions driving liquid-liquid demixing of the CPC. Moreover, we establish HXMS as an approach to define the structural basis for phase separation.


Asunto(s)
Proteínas de Ciclo Celular , Separación de Fases , Proteínas de Ciclo Celular/genética , Cromosomas , Mitosis , Citoesqueleto , Segregación Cromosómica , Aurora Quinasa B/genética
2.
Nat Immunol ; 24(10): 1698-1710, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37592014

RESUMEN

In development, pioneer transcription factors access silent chromatin to reveal lineage-specific gene programs. The structured DNA-binding domains of pioneer factors have been well characterized, but whether and how intrinsically disordered regions affect chromatin and control cell fate is unclear. Here, we report that deletion of an intrinsically disordered region of the pioneer factor TCF-1 (termed L1) leads to an early developmental block in T cells. The few T cells that develop from progenitors expressing TCF-1 lacking L1 exhibit lineage infidelity distinct from the lineage diversion of TCF-1-deficient cells. Mechanistically, L1 is required for activation of T cell genes and repression of GATA2-driven genes, normally reserved to the mast cell and dendritic cell lineages. Underlying this lineage diversion, L1 mediates binding of TCF-1 to its earliest target genes, which are subject to repression as T cells develop. These data suggest that the intrinsically disordered N terminus of TCF-1 maintains T cell lineage fidelity.


Asunto(s)
Linfocitos T , Factores de Transcripción , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Linfocitos T/metabolismo , Factor 1 de Transcripción de Linfocitos T/genética , Cromatina/metabolismo
3.
bioRxiv ; 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37292983

RESUMEN

The physical basis of phase separation is thought to consist of the same types of bonds that specify conventional macromolecular interactions yet is unsatisfyingly often referred to as 'fuzzy'. Gaining clarity on the biogenesis of membraneless cellular compartments is one of the most demanding challenges in biology. Here, we focus on the chromosome passenger complex (CPC), that forms a chromatin body that regulates chromosome segregation in mitosis. Within the three regulatory subunits of the CPC implicated in phase separation - a heterotrimer of INCENP, Survivin, and Borealin - we identify the contact regions formed upon droplet formation using hydrogen/deuterium-exchange mass spectrometry (HXMS). These contact regions correspond to some of the interfaces seen between individual heterotrimers within the crystal lattice they form. A major contribution comes from specific electrostatic interactions that can be broken and reversed through initial and compensatory mutagenesis, respectively. Our findings reveal structural insight for interactions driving liquid-liquid demixing of the CPC. Moreover, we establish HXMS as an approach to define the structural basis for phase separation.

4.
Blood ; 141(24): 2993-3005, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023370

RESUMEN

Antibody binding to a plasma metalloprotease, a disintegrin and metalloproteinase with thrombospondin type 1 repeats 13 (ADAMTS13), is necessary for the development of immune thrombotic thrombocytopenic purpura (iTTP). Inhibition of ADAMTS13-mediated von Willebrand factor (VWF) cleavage by such antibodies clearly plays a role in the pathophysiology of the disease, although the mechanisms by which they inhibit ADAMTS13 enzymatic function are not fully understood. At least some immunoglobulin G-type antibodies appear to affect the conformational accessibility of ADAMTS13 domains involved in both substrate recognition and inhibitory antibody binding. We used single-chain fragments of the variable region previously identified via phage display from patients with iTTP to explore the mechanisms of action of inhibitory human monoclonal antibodies. Using recombinant full-length ADAMTS13, truncated ADAMTS13 variants, and native ADAMTS13 in normal human plasma, we found that, regardless of the conditions tested, all 3 inhibitory monoclonal antibodies tested affected enzyme turnover rate much more than substrate recognition of VWF. Hydrogen-to-deuterium exchange plus mass spectrometry experiments with each of these inhibitory antibodies demonstrated that residues in the active site of the catalytic domain of ADAMTS13 are differentially exposed to solvent in the presence and absence of monoclonal antibody binding. These results support the hypothesis that inhibition of ADAMTS13 in iTTP may not necessarily occur because the antibodies directly prevent VWF binding, but instead because of allosteric effects that impair VWF cleavage, likely by affecting the conformation of the catalytic center in the protease domain of ADAMTS13. Our findings provide novel insight into the mechanism of autoantibody-mediated inhibition of ADAMTS13 and pathogenesis of iTTP.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Trombosis , Humanos , Anticuerpos Monoclonales , Factor de von Willebrand/metabolismo , Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Autoanticuerpos
5.
medRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865344

RESUMEN

Background: Plasma triglycerides (TGs) are causally associated with coronary artery disease and acute pancreatitis. Apolipoprotein A-V (apoA-V, gene APOA5) is a liver-secreted protein that is carried on triglyceride-rich lipoproteins and promotes the enzymatic activity of lipoprotein lipase (LPL), thereby reducing TG levels. Little is known about apoA-V structure-function; naturally occurring human APOA5 variants can provide novel insights. Methods: We used hydrogen-deuterium exchange mass spectrometry to determine the secondary structure of human apoA-V in lipid-free and lipid-associated conditions and identified a C-terminal hydrophobic face. Then, we used genomic data in the Penn Medicine Biobank to identify a rare variant, Q252X, predicted to specifically eliminate this region. We interrogated the function of apoA-V Q252X using recombinant protein in vitro and in vivo in apoa5 knockout mice. Results: Human apoA-V Q252X carriers exhibited elevated plasma TG levels consistent with loss of function. Apoa5 knockout mice injected with AAV vectors expressing wildtype and variant APOA5-AAV recapitulated this phenotype. Part of the loss of function is due to reduced mRNA expression. Functionally, recombinant apoA-V Q252X was more readily soluble in aqueous solutions and more exchangeable with lipoproteins than WT apoA-V. Despite lacking the C-terminal hydrophobic region (a putative lipid binding domain) this protein also decreased plasma TG in vivo. Conclusions: Deletion of apoA-V's C-terminus leads to reduced apoA-V bioavailability in vivo and higher TG levels. However, the C-terminus is not required for lipoprotein binding or enhancement of intravascular lipolytic activity. WT apoA-V is highly prone to aggregation, and this property is markedly reduced in recombinant apoA-V lacking the C-terminus.

7.
J Biol Chem ; 297(3): 101066, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34384781

RESUMEN

The superfamily of massively large AAA+ protein molecular machines functions to convert the chemical energy of cytosolic ATP into physicomechanical form and use it to perform an extraordinary number of physical operations on proteins, nucleic acids, and membrane systems. Cryo-EM studies now reveal some aspects of substrate handling at high resolution, but the broader interpretation of AAA+ functional properties is still opaque. This paper integrates recent hydrogen exchange results for the typical AAA+ protein Hsp104 with prior information on several near and distantly related others. The analysis points to a widely conserved functional strategy. Hsp104 cycles through a long-lived loosely-structured energy-input "open" state that releases spent ADP and rebinds cytosolic ATP. ATP-binding energy is transduced by allosteric structure change to poise the protein at a high energy level in a more tightly structured "closed" state. The briefly occupied energy-output closed state binds substrate strongly and is catalytically active. ATP hydrolysis permits energetically downhill structural relaxation, which is coupled to drive energy-requiring substrate processing. Other AAA+ proteins appear to cycle through states that are analogous functionally if not in structural detail. These results revise the current model for AAA+ function, explain the structural basis of single-molecule optical tweezer kinetic phases, identify the separate energetic roles of ATP binding and hydrolysis, and specify a sequence of structural and energetic events that carry AAA+ proteins unidirectionally around a functional cycle to propel their diverse physical tasks.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/fisiología , Dineínas/metabolismo , Proteínas de Choque Térmico/fisiología , Hidrólisis , Cinesinas/metabolismo , Cinética , Modelos Moleculares , Miosinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Relación Estructura-Actividad
8.
Cell Chem Biol ; 28(1): 14-25.e9, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33176158

RESUMEN

The benzdiimidazole NAB2 rescues α-synuclein-associated trafficking defects associated with early onset Parkinson's disease in a Nedd4-dependent manner. Despite identification of E3 ubiquitin ligase Nedd4 as a putative target of NAB2, its molecular mechanism of action has not been elucidated. As such, the effect of NAB2 on Nedd4 activity and specificity was interrogated through biochemical, biophysical, and proteomic analyses. NAB2 was found to bind Nedd4 (KDapp = 42 nM), but this binding is side chain mediated and does not alter its conformation or ubiquitination kinetics in vitro. Nedd4 co-localizes with trafficking organelles, and NAB2 exposure did not alter its co-localization. Ubiquitin enrichment coupled proteomics revealed that NAB2 stimulates ubiquitination of trafficking-associated proteins, most likely through modulating the substrate specificity of Nedd4, providing a putative protein network involved in the NAB2 mechanism and revealing trafficking scaffold protein TFG as a Nedd4 substrate.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4/antagonistas & inhibidores , Enfermedad de Parkinson/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Femenino , Humanos , Ubiquitina-Proteína Ligasas Nedd4/aislamiento & purificación , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Enfermedad de Parkinson/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 117(17): 9384-9392, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32277033

RESUMEN

Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Variación Genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato , Sustitución de Aminoácidos , Proteínas de Choque Térmico/genética , Mutación , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 295(6): 1517-1538, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31882541

RESUMEN

Hsp104 is a hexameric AAA+ ring translocase, which drives protein disaggregation in nonmetazoan eukaryotes. Cryo-EM structures of Hsp104 have suggested potential mechanisms of substrate translocation, but precisely how Hsp104 hexamers disaggregate proteins remains incompletely understood. Here, we employed synchrotron X-ray footprinting to probe the solution-state structures of Hsp104 monomers in the absence of nucleotide and Hsp104 hexamers in the presence of ADP or ATPγS (adenosine 5'-O-(thiotriphosphate)). Comparing side-chain solvent accessibilities between these three states illuminated aspects of Hsp104 structure and guided design of Hsp104 variants to probe the disaggregase mechanism in vitro and in vivo We established that Hsp104 hexamers switch from a more-solvated state in ADP to a less-solvated state in ATPγS, consistent with switching from an open spiral to a closed ring visualized by cryo-EM. We pinpointed critical N-terminal domain (NTD), NTD-nucleotide-binding domain 1 (NBD1) linker, NBD1, and middle domain (MD) residues that enable intrinsic disaggregase activity and Hsp70 collaboration. We uncovered NTD residues in the loop between helices A1 and A2 that can be substituted to enhance disaggregase activity. We elucidated a novel potentiated Hsp104 MD variant, Hsp104-RYD, which suppresses α-synuclein, fused in sarcoma (FUS), and TDP-43 toxicity. We disambiguated a secondary pore-loop in NBD1, which collaborates with the NTD and NBD1 tyrosine-bearing pore-loop to drive protein disaggregation. Finally, we defined Leu-601 in NBD2 as crucial for Hsp104 hexamerization. Collectively, our findings unveil new facets of Hsp104 structure and mechanism. They also connect regions undergoing large changes in solvation to functionality, which could have profound implications for protein engineering.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Agregado de Proteínas , Conformación Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sincrotrones , Rayos X
11.
Nat Methods ; 16(7): 595-602, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249422

RESUMEN

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Análisis de Datos , Concentración de Iones de Hidrógeno
12.
Anal Chem ; 91(11): 7474-7481, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31082210

RESUMEN

Hydrogen-deuterium exchange mass spectrometry (HDX MS) has become an important technique for the analysis of protein structure and dynamics. Data analysis remains a bottleneck in the workflow. Sophisticated computer analysis is required to scan through the voluminous MS output in order to find, identify, and validate many partially deuterated peptides, elicit the HDX information, and extend the results to higher structural resolution. We previously made available two software suites, ExMS for identification and analysis of peptide isotopic envelopes in the HDX MS raw data and HDsite for residue-level resolution. Further experience has led to advances in the usability and performance of both programs. Also, newly added modules deal with ETD/ECD analysis, multimodal mass spectra analysis, and presentation options. These advances have been integrated into a stand-alone software solution named ExMS2. The package has been successfully tested by many workers in fine scale epitope mapping, in protein folding studies, and in dissecting structure and structure change of large protein complexes. A description and tutorial for this major upgrade are given here.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Péptidos/análisis , Proteínas/análisis , Programas Informáticos , Análisis de Datos , Bases de Datos de Proteínas , Conformación Proteica , Soluciones
13.
Proc Natl Acad Sci U S A ; 116(15): 7333-7342, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30918129

RESUMEN

Hsp104 is a large AAA+ molecular machine that can rescue proteins trapped in amorphous aggregates and stable amyloids by drawing substrate protein into its central pore. Recent cryo-EM studies image Hsp104 at high resolution. We used hydrogen exchange mass spectrometry analysis (HX MS) to resolve and characterize all of the functionally active and inactive elements of Hsp104, many not accessible to cryo-EM. At a global level, HX MS confirms the one noncanonical interprotomer interface in the Hsp104 hexamer as a marker for the spiraled conformation revealed by cryo-EM and measures its fast conformational cycling under ATP hydrolysis. Other findings enable reinterpretation of the apparent variability of the regulatory middle domain. With respect to detailed mechanism, HX MS determines the response of each Hsp104 structural element to the different bound adenosine nucleotides (ADP, ATP, AMPPNP, and ATPγS). They are distinguished most sensitively by the two Walker A nucleotide-binding segments. Binding of the ATP analog, ATPγS, tightly restructures the Walker A segments and drives the global open-to-closed/extended transition. The global transition carries part of the ATP/ATPγS-binding energy to the somewhat distant central pore. The pore constricts and the tyrosine and other pore-related loops become more tightly structured, which seems to reflect the energy-requiring directional pull that translocates the substrate protein. ATP hydrolysis to ADP allows Hsp104 to relax back to its lowest energy open state ready to restart the cycle.


Asunto(s)
Nucleótidos de Adenina/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Nucleótidos de Adenina/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Espectrometría de Masas , Dominios Proteicos , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
14.
J Am Soc Mass Spectrom ; 29(9): 1936-1939, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30022340

RESUMEN

The analysis of many hydrogen exchange (HX) experiments depends on knowledge of exchange rates expected for the unstructured protein under the same conditions. We present here some minor adjustments to previously calibrated values and a stringent test of their accuracy. Graphical Abstract ᅟ.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Deuterio/química , Espectrometría de Masas/métodos , Proteínas/análisis , Proteínas/química , Deuterio/análisis , Deuterio/metabolismo , Proteínas/metabolismo
15.
Proc Natl Acad Sci U S A ; 115(3): 519-524, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29295923

RESUMEN

We used hydrogen exchange-mass spectrometry (HX MS) and fluorescence to compare the folding of maltose binding protein (MBP) in free solution and in the GroEL/ES cavity. Upon refolding, MBP initially collapses into a dynamic molten globule-like ensemble, then forms an obligatory on-pathway native-like folding intermediate (1.2 seconds) that brings together sequentially remote segments and then folds globally after a long delay (30 seconds). A single valine to glycine mutation imposes a definable folding defect, slows early intermediate formation by 20-fold, and therefore subsequent global folding by approximately twofold. Simple encapsulation within GroEL repairs the folding defect and reestablishes fast folding, with or without ATP-driven cycling. Further examination exposes the structural mechanism. The early folding intermediate is stabilized by an organized cluster of 24 hydrophobic side chains. The cluster preexists in the collapsed ensemble before the H-bond formation seen by HX MS. The V9G mutation slows folding by disrupting the preintermediate cluster. GroEL restores wild-type folding rates by restabilizing the preintermediate, perhaps by a nonspecific equilibrium compression effect within its tightly confining central cavity. These results reveal an active GroEL function other than previously proposed mechanisms, suggesting that GroEL possesses different functionalities that are able to relieve different folding problems. The discovery of the preintermediate, its mutational destabilization, and its restoration by GroEL encapsulation was made possible by the measurement of a previously unexpected type of low-level HX protection, apparently not dependent on H-bonding, that may be characteristic of proteins in confined spaces.


Asunto(s)
Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Unión a Maltosa/química , Pliegue de Proteína , Adenosina Trifosfato/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Unión Proteica , Conformación Proteica
16.
Proc Natl Acad Sci U S A ; 114(46): E9761-E9762, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087353

Asunto(s)
Proteínas
17.
Proc Natl Acad Sci U S A ; 114(31): 8253-8258, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28630329

RESUMEN

We consider the differences between the many-pathway protein folding model derived from theoretical energy landscape considerations and the defined-pathway model derived from experiment. A basic tenet of the energy landscape model is that proteins fold through many heterogeneous pathways by way of amino acid-level dynamics biased toward selecting native-like interactions. The many pathways imagined in the model are not observed in the structure-formation stage of folding by experiments that would have found them, but they have now been detected and characterized for one protein in the initial prenucleation stage. Analysis presented here shows that these many microscopic trajectories are not distinct in any functionally significant way, and they have neither the structural information nor the biased energetics needed to select native vs. nonnative interactions during folding. The opposed defined-pathway model stems from experimental results that show that proteins are assemblies of small cooperative units called foldons and that a number of proteins fold in a reproducible pathway one foldon unit at a time. Thus, the same foldon interactions that encode the native structure of any given protein also naturally encode its particular foldon-based folding pathway, and they collectively sum to produce the energy bias toward native interactions that is necessary for efficient folding. Available information suggests that quantized native structure and stepwise folding coevolved in ancient repeat proteins and were retained as a functional pair due to their utility for solving the difficult protein folding problem.


Asunto(s)
Modelos Moleculares , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Cinética , Resonancia Magnética Nuclear Biomolecular , Ribonucleasa H/química , Ribonucleasa H/metabolismo
18.
J Mol Biol ; 429(14): 2161-2177, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28533135

RESUMEN

Mutation of the cysteines forming the disulfide loop of the platelet GPIbα adhesive A1 domain of von Willebrand factor (VWF) causes quantitative VWF deficiencies in the blood and von Willebrand disease. We report two cases of transient severe thrombocytopenia induced by DDAVP treatment. Cys1272Trp and Cys1458Tyr mutations identified by genetic sequencing implicate an abnormal gain-of-function phenotype, evidenced by thrombocytopenia, which quickly relapses back to normal platelet counts and deficient plasma VWF. Using surface plasmon resonance, analytical rheology, and hydrogen-deuterium exchange mass spectrometry (HXMS), we decipher mechanisms of A1-GPIbα-mediated platelet adhesion and resolve dynamic secondary structure elements that regulate the binding pathway. Constrained by the disulfide, conformational selection between weak and tight binding states of A1 takes precedence and drives normal platelet adhesion to VWF. Less restrained through mutation, loss of the disulfide preferentially diverts binding through an induced-fit disease pathway enabling high-affinity GPIbα binding and firm platelet adhesion to a partially disordered A1 domain. HXMS reveals a dynamic asymmetry of flexible and ordered regions common to both variants, indicating that the partially disordered A1 lacking the disulfide retains native-like structural dynamics. Both binding mechanisms share common structural and thermodynamic properties, but the enhanced local disorder in the disease state perpetuates high-affinity platelet agglutination, characteristic of type 2B VWD, upon DDAVP-stimulated secretion of VWF leading to transient thrombocytopenia and a subsequent deficiency of plasma VWF, characteristic of type 2A VWD.


Asunto(s)
Desamino Arginina Vasopresina/efectos adversos , Proteínas Mutantes/metabolismo , Agregación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/inducido químicamente , Trombocitopenia/genética , Factor de von Willebrand/metabolismo , Sustitución de Aminoácidos , Niño , Cisteína/genética , Cisteína/metabolismo , Desamino Arginina Vasopresina/administración & dosificación , Disulfuros , Femenino , Humanos , Espectrometría de Masas , Proteínas Mutantes/genética , Mutación Missense , Pletismografía de Impedancia , Resonancia por Plasmón de Superficie , Trombocitopenia/patología , Factor de von Willebrand/genética
19.
Proc Natl Acad Sci U S A ; 114(5): 968-973, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096372

RESUMEN

Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-ß peptide, and it is associated with increased incidence of cardiovascular and Alzheimer's disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen-deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.


Asunto(s)
Apolipoproteína E3/química , Apolipoproteína E4/química , Espectrometría de Masas/métodos , Sustitución de Aminoácidos , Apolipoproteína E4/genética , Dicroismo Circular , Predisposición Genética a la Enfermedad , Hidrógeno/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lipoproteínas/metabolismo , Mutación Missense , Mutación Puntual , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química
20.
Annu Rev Biophys ; 45: 135-52, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27145881

RESUMEN

Advanced hydrogen exchange (HX) methodology can now determine the structure of protein folding intermediates and their progression in folding pathways. Key developments over time include the HX pulse labeling method with nuclear magnetic resonance analysis, the fragment separation method, the addition to it of mass spectrometric (MS) analysis, and recent improvements in the HX MS technique and data analysis. Also, the discovery of protein foldons and their role supplies an essential interpretive link. Recent work using HX pulse labeling with MS analysis finds that a number of proteins fold by stepping through a reproducible sequence of native-like intermediates in an ordered pathway. The stepwise nature of the pathway is dictated by the cooperative foldon unit construction of the protein. The pathway order is determined by a sequential stabilization principle; prior native-like structure guides the formation of adjacent native-like structure. This view does not match the funneled energy landscape paradigm of a very large number of folding tracks, which was framed before foldons were known and is more appropriate for the unguided residue-level search to surmount an initial kinetic barrier rather than for the overall unfolded-state to native-state folding pathway.


Asunto(s)
Proteínas/química , Hidrógeno/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Conformación Proteica , Pliegue de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...