Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 6213, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277154

RESUMEN

The mutational spectrum of many genes and their contribution to the global prevalence of hereditary hearing loss is still widely unknown. In this study, we have performed the mutational screening of EYA4 gene by DHLPC and NGS in a large cohort of 531 unrelated Spanish probands and one Australian family with autosomal dominant non-syndromic hearing loss (ADNSHL). In total, 9 novel EYA4 variants have been identified, 3 in the EYA4 variable region (c.160G > T; p.Glu54*, c.781del; p.Thr261Argfs*34 and c.1078C > A; p.Pro360Thr) and 6 in the EYA-HR domain (c.1107G > T; p.Glu369Asp, c.1122G > T; p.Trp374Cys, c.1281G > A; p.Glu427Glu, c.1282-1G > A, c.1601C > G; p.S534* and an heterozygous copy number loss encompassing exons 15 to 17). The contribution of EYA4 mutations to ADNSHL in Spain is, therefore, very limited (~1.5%, 8/531). The pathophysiology of some of these novel variants has been explored. Transient expression of the c-myc-tagged EYA4 mutants in mammalian COS7 cells revealed absence of expression of the p.S534* mutant, consistent with a model of haploinsufficiency reported for all previously described EYA4 truncating mutations. However, normal expression pattern and translocation to the nucleus were observed for the p.Glu369Asp mutant in presence of SIX1. Complementary in silico analysis suggested that c.1107G > T (p.Glu369Asp), c.1281G > A (p.Glu427Glu) and c.1282-1G > A variants alter normal splicing. Minigene assays in NIH3T3 cells further confirmed that all 3 variants caused exon skipping resulting in frameshifts that lead to premature stop codons. Our study reports the first likely pathogenic synonymous variant linked to DFNA10 and provide further evidence for haploinsufficiency as the common underlying disease-causing mechanism for DFNA10-related hearing loss.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Mutación , Transactivadores/genética , Animales , Células COS , Chlorocebus aethiops , Codón sin Sentido , Variaciones en el Número de Copia de ADN , Femenino , Mutación del Sistema de Lectura , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Modelos Moleculares , Mutación Missense , Linaje , Mutación Silenciosa , España/epidemiología
2.
Hum Mol Genet ; 23(10): 2551-68, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24363064

RESUMEN

Tecta is a modular, non-collagenous protein of the tectorial membrane (TM), an extracellular matrix of the cochlea essential for normal hearing. Missense mutations in Tecta cause dominant forms of non-syndromic deafness and a genotype-phenotype correlation has been reported in humans, with mutations in different Tecta domains causing mid- or high-frequency hearing impairments that are either stable or progressive. Three mutant mice were created as models for human Tecta mutations; the Tecta(L1820F,G1824D/+) mouse for zona pellucida (ZP) domain mutations causing stable mid-frequency hearing loss in a Belgian family, the Tecta(C1837G/+) mouse for a ZP-domain mutation underlying progressive mid-frequency hearing loss in a Spanish family and the Tecta(C1619S/+) mouse for a zonadhesin-like (ZA) domain mutation responsible for progressive, high-frequency hearing loss in a French family. Mutations in the ZP and ZA domains generate distinctly different changes in the structure of the TM. Auditory brainstem response thresholds in the 8-40 kHz range are elevated by 30-40 dB in the ZP-domain mutants, whilst those in the ZA-domain mutant are elevated by 20-30 dB. The phenotypes are stable and no evidence has been found for a progressive deterioration in TM structure or auditory function. Despite elevated auditory thresholds, the Tecta mutant mice all exhibit an enhanced tendency to have audiogenic seizures in response to white noise stimuli at low sound pressure levels (≤84 dB SPL), revealing a previously unrecognised consequence of Tecta mutations. These results, together with those from previous studies, establish an allelic series for Tecta unequivocally demonstrating an association between genotype and phenotype.


Asunto(s)
Sordera/genética , Proteínas de la Matriz Extracelular/genética , Membrana Tectoria/patología , Estimulación Acústica , Animales , Sordera/patología , Sordera/fisiopatología , Modelos Animales de Enfermedad , Epilepsia Refleja/genética , Femenino , Proteínas Ligadas a GPI/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células Ciliadas Auditivas Internas/patología , Homocigoto , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Transgénicos , Proteínas Motoras Moleculares/metabolismo , Mutación Missense , Órgano Espiral/patología , Fenotipo , Membrana Tectoria/metabolismo
3.
Hum Mutat ; 32(7): 825-34, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21520338

RESUMEN

The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Pérdida Auditiva Sensorineural/genética , Adolescente , Adulto , Anciano , Audiometría/métodos , Niño , Preescolar , Femenino , Efecto Fundador , Proteínas Ligadas a GPI/genética , Estudios de Asociación Genética , Ligamiento Genético , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Estructura Terciaria de Proteína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...