Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(2): 219-224, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242078

RESUMEN

50 years ago, cell biology was a nascent field. Today, it is a vast discipline whose principles and tools are also applied to other disciplines; vice versa, cell biologists are inspired by other fields. So, the question begs: what is cell biology? The answers are as diverse as the people who define it.

2.
Curr Opin Cell Biol ; 86: 102285, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056142

RESUMEN

The language of biology at the scale of the cell is constituted of alphabets represented by biomolecules. These are stitched together in a variety of ways to create meaning. We argue that the phrases of this language are nanoscale molecular assemblies or nano-hubs for the purpose of information flow. At the cell surface information is sensed and processed via membrane receptors, often configured as multimers. These nano-assemblies serve as receiver nano-hubs, which are flexibly configured with additional nano-hubs that we term modifiers and transducers. This framework serves to process information that is transmitted for execution inside the cell. Here, we explore some examples about how nano-hubs are built and how they may contribute to cellular information flow.


Asunto(s)
Membrana Celular
3.
NPJ Vaccines ; 8(1): 134, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709772

RESUMEN

Detailed characterisation of immune responses induced by COVID-19 vaccines rolled out in India: COVISHIELDTM (CS) and COVAXIN® (CO) in a pre-exposed population is only recently being discovered. We addressed this issue in subjects who received their primary series of vaccination between November 2021 and January 2022. Both vaccines are capable of strongly boosting Wuhan Spike-specific neutralising antibody, polyfunctional Th1 cytokine producing CD4+ T-cells and single IFN-γ + CD8+ T-cells. Consistent with inherent differences in vaccine platform, the vector-based CS vaccine-induced immunity was of greater magnitude, breadth, targeting Delta and Omicron variants compared to the whole-virion inactivated vaccine CO, with CS vaccinees showing persistent CD8+ T-cells responses until 3 months post primary vaccination. This study provides detailed evidence on the magnitude and quality of CS and CO vaccine induced responses in subjects with pre-existing SARS-CoV-2 immunity in India, thereby mitigating vaccine hesitancy arguments in such a population, which remains a global health challenge.

4.
Indian J Med Microbiol ; 45: 100384, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37573057

RESUMEN

PURPOSE: Compared to nasopharyngeal/oropharyngeal swabs (N/OPS-VTM), non-invasive saliva samples have enormous potential for scalability and routine population screening of SARS-CoV-2. In this study, we investigate the efficacy of saliva samples relative to N/OPS-VTM for use as a direct source for RT-PCR based SARS-CoV-2 detection. METHODS: We collected paired nasopharyngeal/oropharyngeal swabs and saliva samples from suspected positive SARS-CoV-2 patients and tested using RT-PCR. We used generalized linear models to investigate factors that explain result agreement. Further, we used simulations to evaluate the effectiveness of saliva-based screening in restricting the spread of infection in a large campus such as an educational institution. RESULTS: We observed a 75.4% agreement between saliva and N/OPS-VTM, that increased drastically to 83% in samples stored for less than three days. Such samples processed within two days of collection showed 74.5% test sensitivity. Our simulations suggest that a test with 75% sensitivity, but high daily capacity can be very effective in limiting the size of infection clusters in a workspace. Guided by these results, we successfully implemented a saliva-based screening in the Bangalore Life Sciences Cluster (BLiSC) campus. CONCLUSION: These results suggest that saliva may be a viable alternate source for SARS-CoV-2 surveillance if samples are processed immediately. Although saliva shows slightly lower sensitivity levels when compared to N/OPS-VTM, saliva collection is logistically advantageous. We strongly recommend the implementation of saliva-based screening strategies for large workplaces and in schools, as well as for population-level screening and routine surveillance as we learn to live with the SARS-CoV-2 virus.


Asunto(s)
COVID-19 , Saliva , Humanos , SARS-CoV-2 , Análisis Costo-Beneficio , COVID-19/diagnóstico , India , Nasofaringe , Manejo de Especímenes
5.
Artículo en Inglés | MEDLINE | ID: mdl-37643877

RESUMEN

The cell membrane, the boundary that separates living cells from their environment, has been the subject of study for over a century. The fluid-mosaic model of Singer and Nicolson in 1972 proposed the plasma membrane as a two-dimensional fluid composed of lipids and proteins. Fifty years hence, advances in biophysical and biochemical tools, particularly optical imaging techniques, have allowed for a better understanding of the physical nature, organization, and composition of cell membranes. This has been made possible by visualizing membrane heterogeneities and their dynamics and appreciating the asymmetrical arrangement of lipids in living cell membranes. Despite these advances, mechanisms underlying the local spatiotemporal organization of membrane components remain unclear. This review surveys various models of membrane organization, culminating in a new model that incorporates nonequilibrium processes and forces exerted by interactions with extramembrane elements such as the actin cytoskeleton. The proposed model provides a comprehensive understanding of membrane organization, taking into account the dynamic nature of the cell membrane and its interactions with its immediate environment.


Asunto(s)
Lípidos de la Membrana , Proteínas , Lípidos de la Membrana/análisis , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Membrana Celular/metabolismo , Proteínas/metabolismo , Citoesqueleto de Actina/metabolismo
6.
Dev Cell ; 58(18): 1748-1763.e6, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37480844

RESUMEN

Adherens junctions (AJs) allow cell contact to inhibit epithelial migration yet also permit epithelia to move as coherent sheets. How, then, do cells identify which contacts will inhibit locomotion? Here, we show that in human epithelial cells this arises from the orientation of cortical flows at AJs. When the leader cells from different migrating sheets make head-on contact with one another, they assemble AJs that couple together oppositely directed cortical flows. This applies a tensile signal to the actin-binding domain (ABD) of α-catenin, which provides a clutch to promote lateral adhesion growth and inhibit the lamellipodial activity necessary for migration. In contrast, AJs found between leader cells in the same migrating sheet have cortical flows aligned in the same direction, and no such mechanical inhibition takes place. Therefore, α-catenin mechanosensitivity in the clutch between E-cadherin and cortical F-actin allows cells to interpret the direction of motion via cortical flows and signal for contact to inhibit locomotion.


Asunto(s)
Actinas , Locomoción , Humanos , alfa Catenina , Cadherinas , Células Epiteliales
7.
Mol Biol Cell ; 34(6): tp1, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37144969

RESUMEN

Quantitative fluorescence emission anisotropy microscopy reveals the organization of fluorescently labeled cellular components and allows their characterization in terms of changes in either rotational diffusion or homo-Förster's energy transfer characteristics in living cells. These properties provide insights into molecular organization, such as orientation, confinement, and oligomerization in situ. Here we elucidate how quantitative measurements of anisotropy using multiple microscope systems may be made by bringing out the main parameters that influence the quantification of fluorescence emission anisotropy. We focus on a variety of parameters that contribute to errors associated with the measurement of emission anisotropy in a microscope. These include the requirement for adequate photon counts for the necessary discrimination of anisotropy values, the influence of extinction ratios of the illumination source, the detector system, the role of numerical aperture, and excitation wavelength. All these parameters also affect the ability to capture the dynamic range of emission anisotropy necessary for quantifying its reduction due to homo-FRET and other processes. Finally, we provide easily implementable tests to assess whether homo-FRET is a cause for the observed emission depolarization.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Microscopía , Anisotropía , Polarización de Fluorescencia
8.
Front Cell Dev Biol ; 11: 1168050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187613

RESUMEN

Actin filaments help in maintaining the cell structure and coordinating cellular movements and cargo transport within the cell. Actin participates in the interaction with several proteins and also with itself to form the helical filamentous actin (F-actin). Actin-binding proteins (ABPs) and actin-associated proteins (AAPs) coordinate the actin filament assembly and processing, regulate the flux between globular G-actin and F-actin in the cell, and help maintain the cellular structure and integrity. We have used protein-protein interaction data available through multiple sources (STRING, BioGRID, mentha, and a few others), functional annotation, and classical actin-binding domains to identify actin-binding and actin-associated proteins in the human proteome. Here, we report 2482 AAPs and present an analysis of their structural and sequential domains, functions, evolutionary conservation, cellular localization, abundance, and tissue-specific expression patterns. This analysis provides a base for the characterization of proteins involved in actin dynamics and turnover in the cell.

9.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877545

RESUMEN

Precise spatial patterning of cell fate during morphogenesis requires accurate inference of cellular position. In making such inferences from morphogen profiles, cells must contend with inherent stochasticity in morphogen production, transport, sensing and signalling. Motivated by the multitude of signalling mechanisms in various developmental contexts, we show how cells may utilise multiple tiers of processing (compartmentalisation) and parallel branches (multiple receptor types), together with feedback control, to bring about fidelity in morphogenetic decoding of their positions within a developing tissue. By simultaneously deploying specific and nonspecific receptors, cells achieve a more accurate and robust inference. We explore these ideas in the patterning of Drosophila melanogaster wing imaginal disc by Wingless morphogen signalling, where multiple endocytic pathways participate in decoding the morphogen gradient. The geometry of the inference landscape in the high dimensional space of parameters provides a measure for robustness and delineates stiff and sloppy directions. This distributed information processing at the scale of the cell highlights how local cell autonomous control facilitates global tissue scale design.


Asunto(s)
Drosophila melanogaster , Transducción de Señal , Animales , Drosophila melanogaster/genética , Diferenciación Celular , Cognición , Morfogénesis
10.
J Vis Exp ; (185)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35913196

RESUMEN

The surface of a living cell provides a versatile active platform for numerous cellular processes, which arise from the interplay of the plasma membrane with the underlying actin cortex. In the past decades, reconstituted, minimal systems based on supported lipid bilayers in combination with actin filament networks have proven to be very instrumental in unraveling basic mechanisms and consequences of membrane-tethered actin networks, as well as in studying the functions of individual membrane-associated proteins. Here, we describe how to reconstitute such active composite systems in vitro that consist of fluid supported lipid bilayers coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors that can be readily observed via total internal reflection fluorescence microscopy. An open-chamber design allows one to assemble the system in a step-by-step manner and to systematically control many parameters such as linker protein concentration, actin concentration, actin filament length, actin/myosin ratio, as well as ATP levels. Finally, we discuss how to control the quality of the system, how to detect and troubleshoot commonly occurring problems, and some limitations of this system in comparison with the living cell surface.


Asunto(s)
Actinas , Membrana Dobles de Lípidos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Miosinas/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(30): e2123056119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867835

RESUMEN

The spatiotemporal organization of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting, and endocytosis. Earlier studies have shown that multiple types of membrane proteins, including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered glycosylphosphatidylinositol-anchored proteins (GPI-APs), form nanoscale clusters driven by active contractile flows generated by the actin cortex. To gain insight into the role of lipids in organizing membrane domains in living cells, we study the molecular interactions that promote the actively generated nanoclusters of GPI-APs and transmembrane proteins. This motivates a theoretical description, wherein a combination of active contractile stresses and transbilayer coupling drives the creation of active emulsions, mesoscale liquid order (lo) domains of the GPI-APs and lipids, at temperatures greater than equilibrium lipid phase segregation. To test these ideas, we use spatial imaging of molecular clustering combined with local membrane order, and we demonstrate that mesoscopic domains enriched in nanoclusters of GPI-APs are maintained by cortical actin activity and transbilayer interactions and exhibit significant lipid order, consistent with predictions of the active composite model.


Asunto(s)
Actinas , Actomiosina , Membrana Celular , Proteínas Ligadas a GPI , Estrés Mecánico , Actinas/química , Actomiosina/química , Animales , Células CHO , Membrana Celular/química , Cricetulus , Proteínas Ligadas a GPI/química , Lípidos/química
13.
Nat Cell Biol ; 23(10): 1073-1084, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616024

RESUMEN

Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis and cancer invasion. Unlike cargo-specific clathrin-mediated endocytosis, the clathrin- and dynamin-independent endocytic pathway (CLIC-GEEC, CG pathway) is considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. While the core molecular players of CG-endocytosis have been recently defined, evidence of cargo-specific adaptors or selective uptake of proteins for the pathway are lacking. Here we identify the actin-binding protein Swiprosin-1 (Swip1, EFHD2) as a cargo-specific adaptor for CG-endocytosis. Swip1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery-Arf1, IRSp53 and actin-and is critical for integrin endocytosis. Through this function, Swip1 supports integrin-dependent cancer-cell migration and invasion, and is a negative prognostic marker in breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG pathway and a role for specific adaptors in recruitment into this endocytic route.


Asunto(s)
Neoplasias de la Mama/patología , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitosis , Integrina beta1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Actinas/metabolismo , Transporte Biológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Clatrina/genética , Dinaminas/genética , Femenino , Humanos , Integrina beta1/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Unión al GTP rab/genética
14.
Acta Biomater ; 135: 356-367, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34469788

RESUMEN

Directed cell migration plays a crucial role in physiological and pathological conditions. One important mechanical cue, known to influence cell migration, is the gradient of substrate elastic modulus (E). However, the cellular microenvironment is viscoelastic and hence the elastic property alone is not sufficient to define its material characteristics. To bridge this gap, in this study, we investigated the influence of the gradient of viscous property of the substrate, as defined by loss modulus (G″) on cell migration. We cultured human mesenchymal stem cells (hMSCs) on a collagen-coated polyacrylamide gel with constant storage modulus (G') but with a gradient in the loss modulus (G″). We found hMSCs to migrate from high to low loss modulus. We have termed this form of directional cellular migration as "Viscotaxis". We hypothesize that the high loss modulus regime deforms more due to creep in the long timescale when subjected to cellular traction. Such differential deformation drives the observed Viscotaxis. To verify our hypothesis, we disrupted the actomyosin contractility with myosin inhibitor blebbistatin and ROCK inhibitor Y27632, and found the directional migration to disappear. Further, such time-dependent creep of the high loss material should lead to lower traction, shorter lifetime of the focal adhesions, and dynamic cell morphology, which was indeed found to be the case. Together, findings in this paper highlight the importance of considering the viscous modulus while preparing stiffness-based substrates for the field of tissue engineering. STATEMENT OF SIGNIFICANCE: While the effect of substrate elastic modulus has been investigated extensively in the context of cell biology, the role of substrate viscoelasticity is poorly understood. This omission is surprising as our body is not elastic, but viscoelastic. Hence, the role of viscoelasticity needs to be investigated at depth in various cellular contexts. One such important context is cell migration. Cell migration is important in morphogenesis, immune response, wound healing, and cancer, to name a few. While it is known that cells migrate when presented with a substrate with a rigidity gradient, cellular behavior in response to viscoelastic gradient has never been investigated. The findings of this paper not only reveal a completely novel cellular taxis or directed migration, it also improves our understanding of cell mechanics significantly.


Asunto(s)
Células Madre Mesenquimatosas , Movimiento Celular , Módulo de Elasticidad , Adhesiones Focales , Humanos , Viscosidad
16.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252168

RESUMEN

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Cloruro de Amonio/farmacología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Cloroquina/farmacología , Clatrina/metabolismo , Sinergismo Farmacológico , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Hidroxicloroquina/administración & dosificación , Macrólidos/farmacología , Niclosamida/administración & dosificación , Niclosamida/farmacología , Unión Proteica/efectos de los fármacos , Dominios Proteicos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/fisiología , Células Vero
17.
Nat Commun ; 12(1): 3675, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135326

RESUMEN

Gangliosides in the outer leaflet of the plasma membrane of eukaryotic cells are essential for many cellular functions and pathogenic interactions. How gangliosides are dynamically organized and how they respond to ligand binding is poorly understood. Using fluorescence anisotropy imaging of synthetic, fluorescently labeled GM1 gangliosides incorporated into the plasma membrane of living cells, we found that GM1 with a fully saturated C16:0 acyl chain, but not with unsaturated C16:1 acyl chain, is actively clustered into nanodomains, which depends on membrane cholesterol, phosphatidylserine and actin. The binding of cholera toxin B-subunit (CTxB) leads to enlarged membrane domains for both C16:0 and C16:1, owing to binding of multiple GM1 under a toxin, and clustering of CTxB. The structure of the ceramide acyl chain still affects these domains, as co-clustering with the glycosylphosphatidylinositol (GPI)-anchored protein CD59 occurs only when GM1 contains the fully saturated C16:0 acyl chain, and not C16:1. Thus, different ceramide species of GM1 gangliosides dictate their assembly into nanodomains and affect nanodomain structure and function, which likely underlies many endogenous cellular processes.


Asunto(s)
Membrana Celular/química , Ceramidas/química , Actinas/química , Antígenos CD59/química , Membrana Celular/efectos de los fármacos , Toxina del Cólera/química , Toxina del Cólera/farmacología , Colesterol/química , Gangliósido G(M1)/química , Glicoesfingolípidos/química , Glicosilfosfatidilinositoles/química , Modelos Biológicos , Simulación de Dinámica Molecular , Fosfatidilserinas/química
18.
Cell Rep ; 34(13): 108884, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789103

RESUMEN

Plants respond to bacterial infection acutely with actin remodeling during plant immune responses. The mechanisms by which bacterial virulence factors (VFs) modulate plant actin polymerization remain enigmatic. Here, we show that plant-type-I formin serves as the molecular sensor for actin remodeling in response to two bacterial VFs: Xanthomonas campestris pv. campestris (Xcc) diffusible signal factor (DSF), and pathogen-associated molecular pattern (PAMP) flagellin in pattern-triggered immunity (PTI). Both VFs regulate actin assembly by tuning the clustering and nucleation activity of formin on the plasma membrane (PM) at the nano-sized scale. By being integrated within the cell-wall-PM-actin cytoskeleton (CW-PM-AC) continuum, the dynamic behavior and function of formins are highly dependent on each scaffold layer's composition within the CW-PM-AC continuum during both DSF and PTI signaling. Our results reveal a central mechanism for rapid actin remodeling during plant-bacteria interactions, in which bacterial signaling molecules fine tune plant formin nanoclustering in a host mechanical-structure-dependent manner.


Asunto(s)
Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Flagelina/metabolismo , Forminas/metabolismo , Nanopartículas/química , Transducción de Señal , Arabidopsis/microbiología , Pared Celular/metabolismo , Celulosa/metabolismo , Interacciones Huésped-Patógeno , Modelos Biológicos , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Unión Proteica , Xanthomonas campestris/metabolismo
19.
J Cell Biol ; 220(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760919

RESUMEN

Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Células Cultivadas , Centriolos/metabolismo , Centrosoma/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Masculino , Tubulina (Proteína)/metabolismo
20.
Curr Biol ; 31(8): 1726-1736.e4, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33607036

RESUMEN

Cadherins are transmembrane adhesion proteins required for the formation of cohesive tissues.1-4 Intracellular interactions of E-cadherin with the Catenin family proteins, α- and ß-catenin, facilitate connections with the cortical actomyosin network. This is necessary for maintaining the integrity of cell-cell adhesion in epithelial tissues.5-11 The supra-molecular architecture of E-cadherin is an important feature of its adhesion function; cis and trans interactions of E-cadherin are deployed12-15 to form clusters, both in cis and trans.11,16-21 Studies in Drosophila embryo have also shown that Drosophila E-cadherin (dE-cad) is organized as finite-sized dynamic clusters that localize with actin patches at cell-cell junctions, in continuous exchange with the extra-junctional pool of dE-cad surrounding the clusters.11,19 Here, we use the ectopic expression of dE-cad in larval hemocytes, which lack endogenous dE-cad to recapitulate functional cell-cell junctions in a convenient model system. We find that, while dE-cad at cell-cell junctions in hemocytes exhibits a clustered trans-paired organization similar to that reported previously in embryonic epithelial tissue, extra-junctional dE-cad is also organized as relatively immobile nanoclusters as well as more loosely packed diffusive oligomers. Oligomers are promoted by cis interactions of the ectodomain, and their growth is counteracted by the activity of cortical actomyosin. Oligomers in turn promote assembly of dense nanoclusters that require cortical actomyosin activity. Thus, cortical actin activity remodels oligomers and generates nanoclusters. The requirement for dynamic actin in the organization of dE-cad at the nanoscale may provide a mechanism to dynamically tune junctional strength.


Asunto(s)
Cadherinas/genética , Actinas , Actomiosina , Animales , Adhesión Celular , Drosophila
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...