Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 14: 100252, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35509864

RESUMEN

Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 â€‹± â€‹15 â€‹mmHg) and a porosity gradient ranging from 80 to 10 â€‹µm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.

2.
Acta Crystallogr C ; 67(Pt 11): m359-63, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22051953

RESUMEN

The structure of the title complex, poly[dicaesium(I) hexaaquacobalt(II) [octaaquatetra-µ-citrato-hexacobalt(II)] dodecahydrate], {Cs(2)[Co(H(2)O)(6)][Co(6)(C(6)H(4)O(7))(4)(H(2)O)(8)]·12H(2)O}(n), at 100 (1) K is formed by layers of a square two-dimensional polymer composed of Co(II) citrate cubanes bridged by magnetically active six-coordinate Co(II) cations. The polymer has plane symmetry p4mm in the c-axis projection. The cubanes reside on sites of crystallographic symmetry 4, while the bridging Co(II) centres lie on twofold axes. The basic polymeric unit has a charge of 4-, balanced by two Cs(+) and a [Co(H(2)O)(6)](2+) (symmetry -4) cation, which lie in channels between the polymeric layers. Unligated water molecules, of which there are 12 per cubane, enter into an extended intralayer and layer-bridging hydrogen-bond pattern, which can be described in detail even though not all of the H atoms of the water molecules were located.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA