Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 9: 732461, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858953

RESUMEN

Antibiotic resistant microorganisms have become an enormous global challenge, and are predicted to cause hundreds of millions of deaths. Therefore, the search for novel/alternative antimicrobial agents is a grand global challenge. Cellulose is an abundant biopolymer with the advantages of low cost, biodegradability, and biocompatibility. With the recent growth of nanotechnology and nanomedicine, numerous researchers have investigated nanofibril cellulose to try to develop an anti-bacterial biomaterial. However, nanofibril cellulose has no inherent antibacterial activity, and therefore cannot be used on its own. To empower cellulose with anti-bacterial properties, new efficient nanomaterials have been designed based on cellulose-based nanofibrils as potential wound dressings, food packaging, and for other antibacterial applications. In this review we summarize reports concerning the therapeutic potential of cellulose-based nanofibrils against various bacterial infections.

2.
Front Cell Infect Microbiol ; 11: 643953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816349

RESUMEN

Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.


Asunto(s)
Quitosano , Nanopartículas , Virosis , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Solubilidad
3.
Front Chem ; 8: 829, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195038

RESUMEN

Pancreatic cancer is the most lethal malignancy of the gastrointestinal tract. Due to its propensity for early local and distant spread, affected patients possess extremely poor prognosis. Currently applied treatments are not effective enough to eradicate all cancer cells, and minimize their migration. Besides, these treatments are associated with adverse effects on normal cells and organs. These therapies are not able to increase the overall survival rate of patients; hence, finding novel adjuvants or alternatives is so essential. Up to now, medicinal herbs were utilized for therapeutic goals. Herbal-based medicine, as traditional biotherapeutics, were employed for cancer treatment. Of them, apigenin, as a bioactive flavonoid that possesses numerous biological properties (e.g., anti-inflammatory and anti-oxidant effects), has shown substantial anticancer activity. It seems that apigenin is capable of suppressing the proliferation of cancer cells via the induction of cell cycle arrest and apoptosis. Besides, apigenin inhibits metastasis via down-regulation of matrix metalloproteinases and the Akt signaling pathway. In pancreatic cancer cells, apigenin sensitizes cells in chemotherapy, and affects molecular pathways such as the hypoxia inducible factor (HIF), vascular endothelial growth factor (VEGF), and glucose transporter-1 (GLUT-1). Herein, the biotherapeutic activity of apigenin and its mechanisms toward cancer cells are presented in the current review to shed some light on anti-tumor activity of apigenin in different cancers, with an emphasis on pancreatic cancer.

4.
Int Immunopharmacol ; 88: 106905, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32905970

RESUMEN

Resveratrol is an anticancer phytochemical polyphenol isolated from a natural origin, without any significant side effects. Resveratrol was investigated in immunocompetent mice with regards to its possible effect on lung cancer metastasis. Cytotoxicity was assessed in three melanoma cell lines (B16F10, B6, and A375) by administration of 20 and 40 µM resveratrol. B16F10 cells were transfected with pT-tdTomato vector to express red fluorescent protein (RFP). RFP-B16F10 cells were injected IV into 3 groups of 20 C57BL/6 mice (ten for tests and others for survival). The three groups include PBS, no treatment, and resveratrol 40 mg/kg IP (4X/week for 3 weeks). Lung tissues were analyzed by TUNEL assay, Western blot, and immunohistochemistry. The in vitro growth of all melanoma cell lines was significantly suppressed by 40 µM resveratrol for 3 days. The mean survival rate of mice was enhanced and the lung tumor growth was inhibited by in vivo IP injection of 40 mg/kg resveratrol. Increased CXCL10 and IFN-γ levels and decreased angiogenesis and less tumor infiltration by Tregs were found in the lung tumors. In conclusion, lung metastasis of melanoma was effectively inhibited by resveratrol treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Resveratrol/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimiocina CXCL10/inmunología , Femenino , Interferón gamma/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Neovascularización Patológica/patología , Resveratrol/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
5.
Comput Math Methods Med ; 2015: 486532, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26089965

RESUMEN

Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.


Asunto(s)
Ecocardiografía/estadística & datos numéricos , Aumento de la Imagen/métodos , Algoritmos , Biología Computacional , Humanos , Análisis de Componente Principal , Análisis de Ondículas
6.
J Cardiothorac Surg ; 10: 58, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25896185

RESUMEN

BACKGROUND: Computerized tomographic angiography (3D data representing the coronary arteries) and X-ray angiography (2D X-ray image sequences providing information about coronary arteries and their stenosis) are standard and popular assessment tools utilized for medical diagnosis of coronary artery diseases. At present, the results of both modalities are individually analyzed by specialists and it is difficult for them to mentally connect the details of these two techniques. The aim of this work is to assist medical diagnosis by providing specialists with the relationship between computerized tomographic angiography and X-ray angiography. METHODS: In this study, coronary arteries from two modalities are registered in order to create a 3D reconstruction of the stenosis position. The proposed method starts with coronary artery segmentation and labeling for both modalities. Then, stenosis and relevant labeled artery in X-ray angiography image are marked by a specialist. Proper control points for the marked artery in both modalities are automatically detected and normalized. Then, a geometrical transformation function is computed using these control points. Finally, this function is utilized to register the marked artery from the X-ray angiography image on the computerized tomographic angiography and get the 3D position of the stenosis lesion. RESULTS: The result is a 3D informative model consisting of stenosis and coronary arteries' information from the X-ray angiography and computerized tomographic angiography modalities. The results of the proposed method for coronary artery segmentation, labeling and 3D reconstruction are evaluated and validated on the dataset containing both modalities. CONCLUSIONS: The advantage of this method is to aid specialists to determine a visual relationship between the correspondent coronary arteries from two modalities and also set up a connection between stenosis points from an X-ray angiography along with their 3D positions on the coronary arteries from computerized tomographic angiography. Moreover, another benefit of this work is that the medical acquisition standards remain unchanged, which means that no calibration in the acquisition devices is required. It can be applied on most computerized tomographic angiography and angiography devices.


Asunto(s)
Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Enfermedad de la Arteria Coronaria/diagnóstico , Estenosis Coronaria/diagnóstico , Humanos , Imagen Multimodal , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...