Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 91(5): 1743-50, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18420604

RESUMEN

The objective of this research was to evaluate the effects of 2 levels of raw milk somatic cell count (SCC) on the composition of Prato cheese and on the microbiological and sensory changes of Prato cheese throughout ripening. Two groups of dairy cows were selected to obtain low-SCC (<200,000 cells/mL) and high-SCC (>700,000 cells/mL) milks, which were used to manufacture 2 vats of cheese. The pasteurized milk was evaluated according to the pH, total solids, fat, total protein, lactose, standard plate count, coliforms at 45 degrees C, and Salmonella spp. The cheese composition was evaluated 2 d after manufacture. Lactic acid bacteria, psychrotrophic bacteria, and yeast and mold counts were carried out after 3, 9, 16, 32, and 51 d of storage. Salmonella spp., Listeria monocytogenes, and coagulase-positive Staphylococcus counts were carried out after 3, 32, and 51 d of storage. A 2 x 5 factorial design with 4 replications was performed. Sensory evaluation of the cheeses from low- and high-SCC milks was carried out for overall acceptance by using a 9-point hedonic scale after 8, 22, 35, 50, and 63 d of storage. The somatic cell levels used did not affect the total protein and salt:moisture contents of the cheeses. The pH and moisture content were higher and the clotting time was longer for cheeses from high-SCC milk. Both cheeses presented the absence of Salmonella spp. and L. monocytogenes, and the coagulase-positive Staphylococcus count was below 1 x 10(2) cfu/g throughout the storage time. The lactic acid bacteria count decreased significantly during the storage time for the cheeses from both low- and high-SCC milks, but at a faster rate for the cheese from high-SCC milk. Cheeses from high-SCC milk presented lower psychrotrophic bacteria counts and higher yeast and mold counts than cheeses from low-SCC milk. Cheeses from low-SCC milk showed better overall acceptance by the consumers. The lower overall acceptance of the cheeses from high-SCC milk may be associated with texture and flavor defects, probably caused by the higher proteolysis of these cheeses.


Asunto(s)
Queso/análisis , Queso/microbiología , Manipulación de Alimentos/métodos , Leche/citología , Sensación , Animales , Bovinos , Recuento de Células , Recuento de Colonia Microbiana , Humanos , Concentración de Iones de Hidrógeno , Lactococcus/aislamiento & purificación , Listeria monocytogenes/aislamiento & purificación , Salmonella/aislamiento & purificación , Staphylococcus/aislamiento & purificación
2.
J Dairy Sci ; 90(2): 630-6, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17235138

RESUMEN

The objective of this research was to evaluate the effect of 2 levels of somatic cell counts (SCC) in raw milk on Prato cheese composition, protein and fat recovery, cheese yield, and ripening. A 2 x 6 factorial design with 3 replications was performed in this study: 2 levels of SCC and 6 levels of storage time. Initially, 2 groups of dairy cows were selected to obtain low (<200,000 cells/ mL) and high (>600,000 cells/mL) SCC in milks that were used to manufacture 2 vats of cheese: 1) low SCC and 2) high SCC. Milk, whey, and cheese compositions were evaluated; clotting time was measured; and cheese yield, protein recovery, and fat recovery were calculated. The cheeses were evaluated after 5, 12, 19, 26, 33, and 40 d of ripening according to pH, moisture, pH 4.6 soluble nitrogen, 12% trichloroacetic acid soluble nitrogen as a percentage of total nitrogen, and firmness. High-SCC milk presented significantly higher total protein and nonprotein nitrogen and lower true protein and casein concentrations than did low-SCC milk, indicating an increased whey protein content and a higher level of proteolysis. Although the pH of the milk was not affected by the somatic cell level, the cheese obtained from high-SCC milk presented significantly higher pH values during manufacture and a higher clotting time. No significant differences in cheese yield and protein recovery were observed for these levels of milk somatic cells. The cheese from high-SCC milk was higher in moisture and had a higher level of proteolysis during ripening, which could compromise the typical sensory quality of the product.


Asunto(s)
Queso/análisis , Leche/citología , Animales , Bovinos , Recuento de Células , Femenino , Manipulación de Alimentos/métodos , Concentración de Iones de Hidrógeno , Leche/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...