Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 2): 114569, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244439

RESUMEN

Maghemite (γ-Fe2O3) nanoparticles (MNPs) were functionalized with 3-aminopropyltriethoxysilane (APTES) to give APTES@Fe2O3 (AMNP) which was then reacted with diethylenetriamine-pentaacetic acid (DTPA) to give a nanohybrid DTPA-APTES@Fe2O3 (DAMNP). Nano-isothermal titration calorimetry shows that DTPA complexation with uranyl ions in water is exothermic and has a stoichiometry of two DTPA to three uranyl ions. Density functional theory calculations indicate the possibility of several complexes between DTPA and UO22+ with different stoichiometries. Interactions between uranyl ions and DAMNP functional groups are revealed by X-photoelectron and Fourier transform infrared spectroscopies. Spherical aberration-corrected Scanning Transmission Electron Microscopy visualizes uranium on the particle surface. Adsorbent performance metrics were evaluated by batch adsorption studies under different conditions of pH, initial uranium concentration and contact time, and the results expressed in terms of equilibrium adsorption capacities (qe) and partition coefficients (PC). By either criterion, performance increases from MNP to AMNP to DAMNP, with the maximum uptake at pH 5.5 in all cases: MNP, qe = 63 mg g-1, PC = 127 mg g-1 mM-1; AMNP, qe = 165 mg g-1, PC = 584 mg g-1 mM-1; DAMNP, qe = 249 mg g-1, PC = 2318 mg g-1 mM-1 (at 25 °C; initial U concentration 0.63 mM; 5 mg adsorbent in 10 mL of solution; contact time, 3 h). The pH maximum is related to the predominance of mono- and di-cationic uranium species. Uptake by DAMNPs follows a pseudo-first-order or pseudo-second-order kinetic model and fits a variety of adsorption models. The maximum adsorption capacity for DAMNPs is higher than for other functionalized magnetic nanohybrids. This adsorbent can be regenerated and recycled for at least 10 cycles with less than 10% loss in activity, and shows high selectivity. These findings suggest that DAMNP could be a promising adsorbent for the recovery of uranium from nuclear wastewaters.


Asunto(s)
Uranio , Aguas Residuales , Adsorción , Aguas Residuales/química , Uranio/análisis , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Cationes , Fenómenos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Ácido Pentético , Concentración de Iones de Hidrógeno
2.
Nanomaterials (Basel) ; 11(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924017

RESUMEN

Advanced oxidation processes constitute a promising alternative for the treatment of wastewater containing organic pollutants. Still, the lack of cost-effective processes has hampered the widespread use of these methodologies. Iron oxide magnetic nanoparticles stand as a great alternative since they can be engineered by different reproducible and scalable methods. The present study consists of the synthesis of single-core and multicore magnetic iron oxide nanoparticles by the microwave-assisted polyol method and their use as self-heating catalysts for the degradation of an anionic (acid orange 8) and a cationic dye (methylene blue). Decolorization of these dyes was successfully improved by subjecting the catalyst to an alternating magnetic field (AMF, 16 kA/m, 200 kHz). The sudden temperature increase at the surface of the catalyst led to an intensification of 10% in the decolorization yields using 1 g/L of catalyst, 0.3 M H2O2 and 500 ppm of dye. Full decolorization was achieved at 90 °C, but iron leaching (40 ppm) was detected at this temperature leading to a homogeneous Fenton process. Multicore nanoparticles showed higher degradation rates and 100% efficiencies in four reusability cycles under the AMF. The improvement of this process with AMF is a step forward into more sustainable remediation techniques.

3.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562703

RESUMEN

Uniform cobalt ferrite nanoparticles have been synthesized using an electrochemical synthesis method in aqueous media. Their colloidal, magnetic, and relaxometric properties have been analyzed. The novelty of this synthesis relies on the use of iron and cobalt foils as precursors, which assures the reproducibility of the iron and cobalt ratio in the structure. A stable and biocompatible targeting conjugate nanoparticle-folic acid (NP-FA) was developed that was capable of targeting FA receptor positivity in HeLa (human cervical cancer) cancer cells. The biocompatibility of NP-FA was assessed in vitro in HeLa cells using the MTT assay, and morphological analysis of the cytoskeleton was performed. A high level of NP-FA binding to HeLa cells was confirmed through qualitative in vitro targeting studies. A value of 479 Fe+Co mM-1s-1 of transverse relaxivity (r2) was obtained in colloidal suspension. In addition, in vitro analysis in HeLa cells also showed an important effect in negative T2 contrast. Therefore, the results show that NP-FA can be a potential biomaterial for use in bio medical trials, especially as a contrast agent in magnetic resonance imaging (MRI).

4.
Nanomaterials (Basel) ; 9(11)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652774

RESUMEN

Magnetite nanoparticles (Fe3O4) of 12 ± 4 nm diameter are electrochemically synthesized for the adsorption and magnetic harvesting of Cr(VI) from contaminated simulated solutions. The removal of Cr(VI) from aqueous media follows pseudo-second-order kinetics. The adsorption efficiency is evaluated in three different scenarios. In standard conditions, i.e., at room temperature; in a thermal bath working at 60 °C, where the temperature could be considered homogeneous within the solution; and finally, under magnetic induction heating, while adjusting the frequency and magnetic field used to attain the same temperature as in the bath experiments. Two benefits of using a magnetic inductor are demonstrated. First, the removal efficiency is almost doubled in comparison to that of the room temperature experiments, and it is higher by 30% compared to that of the bath setup. At the same time as the adsorption occurs, a redox reaction occurs on the surface of the nanoparticles, and Cr(VI), the predominant species in the contaminated solution, is significantly reduced to Cr(III). Through X-ray photoelectron spectroscopy, it is shown that a greater reduction effect is achieved when working in induction conditions than at room temperature. This is the first time that this synergistic effect using magnetic induction heating has been demonstrated for heavy metal decontamination of wastewater.

5.
Theranostics ; 9(20): 5924-5936, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534529

RESUMEN

Targeting TRAIL (Tumor necrosis factor (TNF)-Related Apoptosis-Inducing Ligand) receptors for cancer therapy remains challenging due to tumor cell resistance and poor preparations of TRAIL or its derivatives. Herein, to optimize its therapeutic use, TRAIL was grafted onto iron oxide nanoclusters (NCs) with the aim of increasing its pro-apoptotic potential through nanoparticle-mediated magnetic hyperthermia (MHT) or photothermia (PT). Methods: The nanovector, NC@TRAIL, was characterized in terms of size, grafting efficiency, and potential for MHT and PT. The therapeutic function was assessed on a TRAIL-resistant breast cancer cell line, MDA-MB-231, wild type (WT) or TRAIL-receptor-deficient (DKO), by combining complementary methylene blue assay and flow cytometry detection of apoptosis and necrosis. Results: Combined with MHT or PT under conditions of "moderate hyperthermia" at low concentrations, NC@TRAIL acts synergistically with the TRAIL receptor to increase the cell death rate beyond what can be explained by the mere global elevation of temperature. In contrast, all results are consistent with the idea that there are hotspots, close to the nanovector and, therefore, to the membrane receptor, which cause disruption of the cell membrane. Furthermore, nanovectors targeting other membrane receptors, unrelated to the TNF superfamily, were also found to cause tumor cell damage upon PT. Indeed, functionalization of NCs by transferrin (NC@Tf) or human serum albumin (NC@HSA) induces tumor cell killing when combined with PT, albeit less efficiently than NC@TRAIL. Conclusions: Given that magnetic nanoparticles can easily be functionalized with molecules or proteins recognizing membrane receptors, these results should pave the way to original remote-controlled antitumoral targeted thermal therapies.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Compuestos Férricos/química , Compuestos Férricos/farmacología , Hipertermia Inducida/métodos , Ligando Inductor de Apoptosis Relacionado con TNF/química , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Apoptosis/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Tumoral , Citometría de Flujo , Humanos , Microscopía Electrónica de Transmisión , Factor de Necrosis Tumoral alfa/metabolismo
6.
Phys Chem Chem Phys ; 21(34): 18741-18752, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31424464

RESUMEN

Medical application of nanotechnology implies the development of nanomaterials capable of being functional in different biological environments. In this sense, elongated nanoparticles (e-MNPs) with high-aspect ratio have demonstrated more effective particle cellular internalization, which is favoured by the increased surface area. This paper makes use of an environmentally friendly hydrothermal method to produce magnetic iron oxide e-MNPs, starting from goethite precursors. At high temperatures (Td) goethite transforms into hematite, which subsequently reduces to magnetite when exposed to a hydrogen atmosphere for a certain time. It is shown that by adjusting Td it is possible to obtain Fe3O4 e-MNPs with partially controlled specific surface area and magnetic properties, attributed to different porosity of the samples. The particles' efficiencies for diagnostic and therapeutic purposes (in magnetic resonance imaging and magnetic fluid hyperthermia, respectively) are very good in terms of clinical standards, some samples showing transversal proton nuclear relaxivity r2 (B0 = 1.33 T) = 340 s-1 mM-1 and specific absorption rate SAR > 370 W g-1 at high field amplitudes (B0 = 55 mT). Direct correlations between the SAR, relaxivity, magnetic properties and porosity of the samples are found, and the physico-chemical processes underneath these correlations are investigated. Our results open the possibility of using very efficient high-aspect ratio elongated nanoparticles with optimized chemico-physical properties for biomedical applications.


Asunto(s)
Nanopartículas de Magnetita/química , Calor , Hidrógeno/química , Magnetismo , Conformación Molecular , Fenómenos Físicos , Dióxido de Silicio/química , Propiedades de Superficie
7.
J Nanosci Nanotechnol ; 19(8): 4911-4919, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913802

RESUMEN

Environmental pollution caused by heavy metals constitutes a serious public health problem. In the case of uranium depletion, amidoxime groups are important because of their high affinity for uranium(VI). New series of bis(amidoxime)s with catechol-derived anchor groups were tested (b-AMD-1 and b-AMD-2). The catechol groups were designed to bind to the surface of maghemite nanoparticles (MNPs), and two nanohybrid devices MNP-b-AMD-1 and MNP-b-AMD-2 were obtained. This strategy makes for efficient removal of U(VI) via its complexation with the bis(amidoxime)s (b-AMD) and also its extraction from aqueous solution by magnetic harvesting of the MNPs. The assynthesized and b-AMD-grafted MNPs were characterized by several techniques: X-ray diffraction (XRD), high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM), X-ray photoelectron spectrophotometry (XPS), thermal analysis (TG/DTA) and Fourier transform infrared spectroscopy (FTIR). Sorption tests were run at pH 6.5, which corresponds to the highest affinity and selectivity of b-AMD for U(VI). After magnetic separation, the chelation ability and the selectivity of MNP-b-AMD-1 and MNP-b-AMD-2 towards U(VI) were evaluated by measuring the residual U(VI) concentration in the supernatant by inductively coupled plasma-mass spectrometry (ICP-MS). The data were plotted according to the Langmuir and Freundlich isotherms; the maximal sorption capacity (qmax) was 29 and 60 mg U g-1 for MNP-b-AMD-1 and MNP-b-AMD-2, respectively. This confirms that bis(amidoxime) groups are good candidates for uranium depletion of aqueous solution.

8.
Nanotechnology ; 30(11): 112001, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30609414

RESUMEN

Magnetic nanoparticles (MNPs), and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for biomedical applications. In such colloids, nanoparticles tend to form assemblies, either aggregates, if the union is permanent, or agglomerates, if it is reversible. These clustering processes have a strong impact on the MNPs' properties that are often not well understood. In this review, the causes and consequences of MNPs aggregation/agglomeration are reviewed and discussed. Special attention has been paid to the impact of the MNPs aggregation/agglomeration on their magnetic properties and heating properties, when exposed to an alternating magnetic field in the frame of magnetic hyperthermia. In addition, a model system with MNPs of two different sizes coated with three different molecules oleic acid, meso-2, 3-dimercaptosuccinic acid and poly(maleic anhydride-alt-1-octadecene) has been characterized and the results used to support the ideas reviewed.

9.
J Phys Chem A ; 116(1): 207-14, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22146076

RESUMEN

Photoinduced proton transfer reactions of harmane (1-methyl-9H-pyrido[3,4-b]indole) (HAR) in the presence of a proton donor/acceptor such as dihydrogen phosphate anions in aqueous solution have been studied by stationary and time-resolved fluorescence spectroscopy. The presence of high amounts of dihydrogen phosphate ions modifies the acid/base properties of this alkaloid. Thus, by keeping the pH constant at pH 8.8 and by increasing the amount of NaH(2)PO(4) in the solution, it is possible to reproduce the same spectral profiles as those obtained in high alkaline solutions (pH >12) in the absence of NaH(2)PO(4). Under these conditions, a new fluorescence profile appears at around 520 nm. This result could be related to the results of a recent investigation which suggests that a high intake of phosphates may promote skin tumorigenesis. The presence of ß-cyclodextrin (ß-CD) avoids the proton transfer reactions in this alkaloid by means the formation of an inclusion complex between ß-CD and HAR. The formation of this complex originates a remarkable enhancement of the emission intensity from the neutral form in contrast to the cationic and zwitterionic forms. A new lifetime was obtained at 360 nm (2.5 ns), which was associated with the emission of this inclusion complex. At this wavelength, the fluorescence intensity decay of HAR can be described by a linear combination of two exponentials. From the ratio between the pre-exponential factors, we have obtained a value of K = 501 M for the equilibrium of formation of this complex.


Asunto(s)
Harmina/análogos & derivados , Ácidos Fosfóricos/química , Procesos Fotoquímicos , Protones , beta-Ciclodextrinas/química , Aniones/química , Transferencia de Energía , Fluorescencia , Harmina/química , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Teoría Cuántica , Soluciones , Espectrometría de Fluorescencia , Termodinámica , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...