Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432137

RESUMEN

The adsorption of Eu(III) on composites synthesised from graphene oxide (GO), maghemite (MGH), and chitosan (CS) has been studied using different approaches. The physicochemical and morphological characteristics of the composites GO-MGH, GO-CS, GO-MGH-CS I, II, and III were determined by XRD, Mössbauer spectroscopy, FTIR, Raman spectroscopy, and TEM. According to the results of batch experiments, the maximum experimental adsorption capacity was 52, 54, 25, 103, and 102 mg/g for GO-MGH, GO-CS, GO-MGH-CS I, II, and III, respectively. The data obtained are in better agreement with the Langmuir, pseudo-second-order, and pseudo-first-order models only for GO-MGH. Thus, the adsorption of Eu(III) on the composites was a favourable, monolayer, and occurred at homogeneous sites. The nature of adsorption is chemical and, in the case of GO-MGH, physical. Tests of the composites in natural waters showed a high removal efficiency for Eu(III), Pu(IV), and Am(III), ranging from 74 to 100%. The ANFIS model has quite good predictive ability, as shown by the values for R2, MSE, SSE, and ARE. The GO-MGH-CS composites with the high adsorption capacity could be promising candidates for the removal of Eu(III) and the pre-concentration of Pu(IV) and Am(III) from natural waters.


Asunto(s)
Quitosano , Europio , Adsorción , Iones
2.
Materials (Basel) ; 15(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36363138

RESUMEN

In this study, an environmentally friendly sol-gel synthetic approach was used for the preparation of yttrium-doped MgFe2O4. Two series of compounds with different iron content were synthesized and A-site substitution effects were investigated. In the first series, the iron content was fixed and the charge balance was suggested to be compensated by a partial reduction of Fe3+ to Fe2+ or formation of interstitial O2- ions. For the second series of samples, the iron content was reduced in accordance with the substitution level to compensate for the excess of positive charge, which accumulates due to replacing divalent Mg2+ with trivalent Y3+ ions. Structural, morphological and magnetic properties were inspected. It was observed that single-phase compounds can only form when the substitution level reaches 20 mol% of Y3+ ions and iron content is reduced. The coercivity as well as saturation magnetization decreased with the increase in yttrium content. Mössbauer spectroscopy was used to investigate the iron content in both tetrahedral and octahedral positions.

3.
Environ Sci Pollut Res Int ; 29(49): 74933-74950, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35648351

RESUMEN

The muscovite mica clay-graphene oxide-maghemite-magnetite (γ-Fe2O3-Fe3O4) composite was first used for the adsorption of caesium(I) and cobalt(II). The presence of clay minerals, graphene oxide, maghemite, and magnetite was detected in the prepared composite by XRD, WD-XRF, Mössbauer spectroscopy, and ATR-FTIR. The SEM and TEM results show that the composite has a layered structure with irregularly shaped pores on the surface. It was found that the adsorption of ions depends on the initial concentration, pH (except for caesium), mass of adsorbent, temperature, and contact time. The maximum adsorption capacity for Cs(I) and Co(II) was 2286 mg/g and 652 mg/g, respectively, and was obtained at concentrations (Cs(I) = 12,630 mg/L; Co(II) = 3200 mg/L), adsorbent mass of 0.01 g, pH (Cs(I) = 7; Co(II) = 5), temperature of 20 ± 1 °C, and contact time of 24 h. The high adsorption capacity of the composite could be due to a diversity of functional groups, a large number of active sites or the multilayer adsorption of caesium and cobalt ions on the surface of the composite. The Freundlich, Langmuir isotherms, and the pseudo-second-order kinetic model better describe the adsorption of these ions on the composite. The adsorption was non-spontaneous endothermic for Cs(I) and spontaneous endothermic for Co(II). The proposed mechanism of adsorption of Cs and Co ions on the composite is complex and involves electrostatic interactions and ion exchange. The ANFIS model proved to be quite effective in predicting the adsorption of Cs(I) and Co(II), as shown by the obtained values of R2, MSE, SSE, and ARE.

4.
Materials (Basel) ; 14(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34500933

RESUMEN

In this work, lanthanum and manganese co-substitution effects on different properties of bismuth ferrite solid solutions Bi1-xLaxFe0.85Mn0.15O3 (x from 0 to 1) prepared by a sol-gel synthetic approach have been investigated. It was observed that the structural, morphological, and magnetic properties of obtained specimens are influenced by the amount of introduced La3+ ions. Surprisingly, only the compound with a composition of BiFe0.85Mn0.15O3 was not monophasic, and the presence of neighboring phases was determined from X-ray diffraction analysis and Mössbauer measurements. Structural transitions from orthorhombic to cubic and back to orthorhombic were also observed depending on the La3+ amount. Antiferromagnetic behaviour was observed for all of the samples, with the highest magnetisation values for Bi0.5La0.5Fe0.85Mn0.15O3. Additionally, structural attributes and morphological features were evaluated by Raman spectroscopy and scanning electron microscopy (SEM), respectively.

5.
Materials (Basel) ; 14(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810038

RESUMEN

In this study, an aqueous sol-gel synthesis method and subsequent dip-coating technique were applied for the preparation of yttrium iron garnet (YIG), yttrium iron perovskite (YIP), and terbium iron perovskite (TIP) bulk and thin films. The monophasic highly crystalline different iron ferrite powders have been synthesized using this simple aqueous sol-gel process displaying the suitability of the method. In the next step, the same sol-gel solution was used for the fabrication of coatings on monocrystalline silicon (100) using a dip-coating procedure. This resulted, likely due to substrate surface influence, in all coatings having mixed phases of both garnet and perovskite. Thermogravimetric (TG) analysis of the precursor gels was carried out. All the samples were investigated by X-ray powder diffraction (XRD) analysis. The coatings were also investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Mössbauer spectroscopy. Magnetic measurements were also carried out.

6.
Sci Rep ; 11(1): 2875, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536490

RESUMEN

In the present work, gadolinium substitution effects on the properties of yttrium manganite YxGd1-xMn0.97Fe0.03O3 (x from 0 to 1 with a step of 0.2) synthesized by an aqueous sol-gel method have been investigated. Partial substitution of Mn3+ by 57Fe3+ in the manganite was also performed in order to investigate deeper the structural properties of synthesized compounds applying Mössbauer spectroscopy. It was demonstrated that substitution of Y3+ by Gd3+ ions leads to the changes of structural, magnetic and morphological properties of investigated system. The crystal structure gradually transformed from hexagonal to orthorhombic with an increase of Gd3+ content in the crystal lattice. The mixed phase was obtained when x = 0.6, whereas other compounds were determined to be monophasic. Magnetization measurements revealed paramagnetic behavior of all specimens, however magnetization values were found to be dependent on chemical composition of the samples. Solid solutions with orthorhombic structure revealed higher magnetization values compared to those of hexagonal samples. The highest magnetization was observed for pure GdMn0.97Fe0.03O3. Structural properties were investigated by powder X-ray diffraction, Mössbauer, FTIR and Raman spectroscopies. Morphological features of the synthesized specimens were studied by scanning electron microscopy (SEM).

7.
J Biol Inorg Chem ; 26(2-3): 299-311, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33586048

RESUMEN

In previous studies it was found that the antimicrobial properties of pulcherrimin-producing Metschnikowia species are related to the formation of a red pigment-pulcherrimin and sequestration of free iron from their growth medium. For strains of Metschnikowia pulcherrima, M. sinensis, M. shaxiensis, and M. fructicola, at a high, ≈80 mg/kg, elemental Fe concentration in agar growth media we observed the essentially different (metal luster, non-glossy rust like, and colored) yeast biomass coatings. For the studied strains the optical and scanning electron microscopies showed the increased formation of chlamydospores that accumulate a red pigment-insoluble pulcherrimin rich in iron. The chlamydospore formation and decay depended on the iron concentration. In this study pulcherrimin in biomass of the selected Metschnikowia strains was detected by Mössbauer spectroscopy. At ≈80 mg/kg elemental Fe concentration the Mössbauer spectra of biomass of the studied strains were almost identical to these of purified pulcherrimin. Iron in pulcherrimin reached ≈1% of biomass by weight which is very high in comparison with elemental Fe percentage in growth medium and is not necessary for yeast growth. The pulcherrimin in biomass was also observed by Mössbauer spectroscopy at lower, ≈5 mg/kg, elemental Fe concentration. Through chemical binding of iron pulcherrimin sequestrates the soluble Fe in the growth media. However, at high Fe concentrations, the chemical and biochemical processes lead to the pulcherrimin accumulation in biomass chlamydospores. When soluble iron is sequestrated or removed from the growth media in this way, it becomes inaccessible for other microorganisms.


Asunto(s)
Aminoácidos Sulfúricos/biosíntesis , Biomasa , Hierro/metabolismo , Metschnikowia/metabolismo , Piperidinas , Especificidad de la Especie
8.
Nanomaterials (Basel) ; 11(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33573001

RESUMEN

Foodborne pathogens are frequently associated with risks and outbreaks of many diseases; therefore, food safety and processing remain a priority to control and minimize these risks. In this work, nisin-loaded magnetic nanoparticles were used and activated by alternating 10 and 125 mT (peak to peak) magnetic fields (AMFs) for biocontrol of bacteria Listeria innocua, a suitable model to study the inactivation of common foodborne pathogen L. monocytogenes. It was shown that L. innocua features high resistance to nisin-based bioactive nanoparticles, however, application of AMFs (15 and 30 min exposure) significantly potentiates the treatment resulting in considerable log reduction of viable cells. The morphological changes and the resulting cellular damage, which was induced by the synergistic treatment, was confirmed using scanning electron microscopy. The thermal effects were also estimated in the study. The results are useful for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections. The proposed methodology is a contactless alternative to the currently established pulsed-electric field-based treatment in food processing.

9.
Materials (Basel) ; 13(13)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645940

RESUMEN

In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the formation of neighboring crystal phases was observed. The thermal behavior of BFO precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis and Mössbauer spectroscopy were employed for the investigation of structural properties. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials. The obtained powders were also characterized by magnetization measurements, which showed antiferromagnetic behavior of BFO powders.

10.
Mater Sci Eng C Mater Biol Appl ; 112: 110918, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409069

RESUMEN

In the present work, Fe3+ and Zn2+ co-substituted ß-tricalcium phosphate (ß-TCP) has been synthesized by wet co-precipitation method. Co-substitution level in the range from 1 to 5 mol% has been studied. Thermal decomposition of as-prepared precipitates was shown to be affected by introducing of foreign ions, decreasing the decomposition temperature of precursor. It was determined that partial substitution of Ca2+ by Fe3+ and Zn2+ ions leads to the change in lattice parameters, which gradually decrease as doping level increases. Lattice distortion was also confirmed by means of Raman spectroscopy, which showed gradual change of the peaks shape in the Raman spectra. Rietveld refinement and electron paramagnetic resonance study confirmed that Fe3+ ions occupy only one Ca crystallographic site until Fe3+ and Zn2+ substitution level reaches 5 mol%. All co-substituted samples revealed paramagnetic behavior, magnetization of powders was determined to be linearly dependent on concentration of Fe3+ ions. Cytotoxicity of the synthesized species was estimated by in vivo assay using zebrafish (Danio rerio) and revealed non-toxic nature of the samples. Preparation of ceramic bodies from the powders was performed, however the results obtained on Vickers hardness of the ceramics did not show improvement in mechanical properties induced by co-substitution.


Asunto(s)
Fosfatos de Calcio/química , Hierro/química , Magnetismo , Zinc/química , Animales , Fosfatos de Calcio/síntesis química , Fosfatos de Calcio/farmacología , Embrión no Mamífero/efectos de los fármacos , Dureza , Polvos/química , Espectroscopía de Mossbauer , Espectrometría Raman , Temperatura , Pez Cebra/crecimiento & desarrollo
11.
Appl Radiat Isot ; 89: 85-94, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24607533

RESUMEN

A set of experiments was performed to determine the factors that influence TcO4(-) interaction with Fe-bearing minerals and to explore the effect of microbial activity on the behaviour of Tc(VII) in solution, in the presence of iron oxides under oxidizing medium. Gradual sorption of TcO4(-) (aq) onto wustite/magnetite was observed under alkaline conditions (pH 8-9). No pronounced effect of TcO4(-) (aq) interaction with hematite was observed in the investigating alkaline systems. At low pH values (2.7-4.5), TcO4(-) retention on hematite increases, suggesting that the process is dependent on pH. Sorption of (99)Tc (VII) onto hematite at pH 7.6-8.0 was achieved because of the presence of specific microorganisms.


Asunto(s)
Compuestos Férricos/química , Pertecnetato de Sodio Tc 99m/química , Microbiología del Suelo , Contaminantes Radiactivos del Suelo/química , Adsorción , Bacterias/química , Bacterias/efectos de la radiación , Hongos/química , Hongos/efectos de la radiación , Oxidación-Reducción , Conteo por Cintilación , Pertecnetato de Sodio Tc 99m/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...