Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochimie ; 217: 74-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37690471

RESUMEN

Mitochondrial gene editing holds great promise as a therapeutic approach for mitochondrial diseases caused by mutations in the mitochondrial DNA (mtDNA). Current strategies focus on reducing mutant mtDNA heteroplasmy levels through targeted cleavage or base editing. However, the delivery of editing components into mitochondria remains a challenge. Here we investigate the import of CRISPR-Cas12a system guide RNAs (crRNAs) into human mitochondria and study the structural requirements for this process by northern blot analysis of RNA isolated from nucleases-treated mitoplasts. To investigate whether the fusion of crRNA with known RNA import determinants (MLS) improve its mitochondrial targeting, we added MLS hairpin structures at 3'-end of crRNA and demonstrated that this did not impact crRNA ability to program specific cleavage of DNA in lysate of human cells expressing AsCas12a nuclease. Surprisingly, mitochondrial localization of the fused crRNA molecules was not improved compared to non-modified version, indicating that structured scaffold domain of crRNA can probably function as MLS, assuring crRNA mitochondrial import. Then, we designed a series of crRNAs targeting different regions of mtDNA and demonstrated their ability to program specific cleavage of mtDNA fragments in cell lysate and their partial localization in mitochondrial matrix in human cells transfected with these RNA molecules. We hypothesize that mitochondrial import of crRNAs may depend on their secondary structure/sequence. We presume that imported crRNA allow reconstituting the active crRNA/Cas12a system in human mitochondria, which can contribute to the development of effective strategies for mitochondrial gene editing and potential future treatment of mitochondrial diseases.


Asunto(s)
Sistemas CRISPR-Cas , Enfermedades Mitocondriales , Humanos , ARN Guía de Sistemas CRISPR-Cas , Mitocondrias/genética , ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética
2.
J Fluoresc ; 34(2): 925-933, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37421567

RESUMEN

In non-viscous aqueous solutions, the cyanine fluorescent dyes Cy3 and Cy5 have rather low fluorescence efficiency (the fluorescence quantum yields of Cy3 and Cy5 are 0.04 and 0.3, respectively [1, 2]) and short excited state lifetimes due to their structural features. In this work, we investigated the effect of solubility and rotational degrees of freedom on the fluorescence efficiency of Cy3 and Cy5 in several ways. We compared the fluorescence efficiencies of two cyanine dyes sCy3 and sCy5 with the introduction of a sulfonyl substituent in the aromatic ring as well as covalently bound to T10 oligonucleotides. The results show that because of the different lengths of the polymethine chains between the aromatic rings of the dyes, cis-trans-isomerization has a much greater effect on the Cy3 molecule than on the Cy5 molecule, while the effect of aggregation is also significant.

3.
BMC Biol ; 21(1): 103, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158879

RESUMEN

BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.


Asunto(s)
Genoma Mitocondrial , Animales , Humanos , Mitocondrias , ADN Mitocondrial/genética , Genoma Humano , Estructura Secundaria de Proteína , ADN de Cadena Simple , Mamíferos
4.
Genes (Basel) ; 14(3)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36980992

RESUMEN

Molybdenum cofactor deficiency type B (MOCODB; #252160) is an autosomal recessive metabolic disorder that has only been described in 37 affected patients. In this report, we describe the presence of an in-frame homozygous variant (c.471_477delTTTAAAAinsG) in the MOCS2 gene in an affected child, diagnosed with Ohtahara syndrome according to the clinical manifestations. The analysis of the three-dimensional structure of the protein and the amino acid substitutions suggested the pathogenicity of this mutation. To prevent transmitting this mutation to the next generation, we used preimplantation genetic testing for the monogenic disorders (PGT-M) protocol to select MOCS2 gene mutant-free embryos for transfer in an in vitro fertilization (IVF) program. As a result, a healthy child was born. Interestingly, both parents of the proband shared an identical mitochondrial (mt) DNA control region, assuming their close relationship and thus suggesting that both copies of the nuclear rare variant c.471_477delTTTAAAAinsG may have been transmitted from the same female ancestor. Our estimation of the a priori probability of meeting individuals with the same mtDNA haplotype confirms the assumption of a possible distant maternal relationship among the proband's direct relatives.


Asunto(s)
ADN Mitocondrial , Nacimiento Vivo , Embarazo , Humanos , Femenino , Niño , Pruebas Genéticas/métodos , Fertilización In Vitro , Mutación
5.
Biosystems ; 223: 104819, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36450320

RESUMEN

This short review provides basic knowledge on mitochondrial inheritance, its disorders, and potential ways to overcome them in human reproductive medicine. The latter are currently mostly associated with the so-called mitochondrial replacement (nuclear transfer) procedures, performed at different stages and with slight technical differences. Being promising but obviously highly invasive, these procedures require detailed investigation of their delayed effects on embryogenesis, pregnancy and future health. A special attention is paid to the newest available data on these issues, as well as to their limitations and possible further research directions.


Asunto(s)
Enfermedades Mitocondriales , Embarazo , Femenino , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/prevención & control , Mitocondrias/genética , Técnicas de Transferencia Nuclear , ADN Mitocondrial/genética
6.
Nucleic Acids Res ; 50(18): 10264-10277, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36130228

RESUMEN

The mutational spectrum of the mitochondrial DNA (mtDNA) does not resemble any of the known mutational signatures of the nuclear genome and variation in mtDNA mutational spectra between different organisms is still incomprehensible. Since mitochondria are responsible for aerobic respiration, it is expected that mtDNA mutational spectrum is affected by oxidative damage. Assuming that oxidative damage increases with age, we analyse mtDNA mutagenesis of different species in regards to their generation length. Analysing, (i) dozens of thousands of somatic mtDNA mutations in samples of different ages (ii) 70053 polymorphic synonymous mtDNA substitutions reconstructed in 424 mammalian species with different generation lengths and (iii) synonymous nucleotide content of 650 complete mitochondrial genomes of mammalian species we observed that the frequency of AH > GH substitutions (H: heavy strand notation) is twice bigger in species with high versus low generation length making their mtDNA more AH poor and GH rich. Considering that AH > GH substitutions are also sensitive to the time spent single-stranded (TSSS) during asynchronous mtDNA replication we demonstrated that AH > GH substitution rate is a function of both species-specific generation length and position-specific TSSS. We propose that AH > GH is a mitochondria-specific signature of oxidative damage associated with both aging and TSSS.


Asunto(s)
Envejecimiento , ADN Mitocondrial , Mamíferos , Envejecimiento/genética , Animales , ADN Mitocondrial/genética , Mamíferos/genética , Mitocondrias/genética , Mutación , Nucleótidos
7.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012553

RESUMEN

Type V Cas12a nucleases are DNA editors working in a wide temperature range and using expanded protospacer-adjacent motifs (PAMs). Though they are widely used, there is still a demand for discovering new ones. Here, we demonstrate a novel ortholog from Ruminococcus bromii sp. entitled RbCas12a, which is able to efficiently cleave target DNA templates, using the particularly high accessibility of PAM 5'-YYN and a relatively wide temperature range from 20 °C to 42 °C. In comparison to Acidaminococcus sp. (AsCas12a) nuclease, RbCas12a is capable of processing DNA more efficiently, and can be active upon being charged by spacer-only RNA at lower concentrations in vitro. We show that the human-optimized RbCas12a nuclease is also active in mammalian cells, and can be applied for efficient deletion incorporation into the human genome. Given the advantageous properties of RbCas12a, this enzyme shows potential for clinical and biotechnological applications within the field of genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas , Acidaminococcus/genética , Acidaminococcus/metabolismo , Animales , ADN/metabolismo , Endonucleasas/metabolismo , Edición Génica , Humanos , Mamíferos/metabolismo , Ruminococcus
9.
Nucleic Acids Res ; 50(2): 1162-1173, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34951459

RESUMEN

CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5'-scaffold moiety and variable 3'-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer moiety only. crRNAs split into separate scaffold and spacer RNAs catalyzed highly specific and efficient cleavage of target DNA by AsCas12a in vitro and in lysates of human cells. In addition to dsDNA target cleavage, AsCas12a programmed with split crRNAs also catalyzed specific ssDNA target cleavage and non-specific ssDNA degradation (collateral activity). V-A effector nucleases from Francisella novicida (FnCas12a) and Lachnospiraceae bacterium (LbCas12a) were also functional with split crRNAs. Thus, the ability of V-A effectors to use split crRNAs appears to be a general property. Though higher concentrations of split crRNA components are needed to achieve efficient target cleavage, split crRNAs open new lines of inquiry into the mechanisms of target recognition and cleavage and may stimulate further development of single-tube multiplex and/or parallel diagnostic tests based on Cas12a nucleases.


Asunto(s)
Acidaminococcus , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Acidaminococcus/genética , Acidaminococcus/metabolismo , División del ADN , Francisella/genética , Francisella/metabolismo , Edición Génica
10.
Cells ; 10(9)2021 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-34572133

RESUMEN

With the nucleus as an exception, mitochondria are the only animal cell organelles containing their own genetic information, called mitochondrial DNA (mtDNA). During oocyte maturation, the mtDNA copy number dramatically increases and the distribution of mitochondria changes significantly. As oocyte maturation requires a large amount of ATP for continuous transcription and translation, the availability of the right number of functional mitochondria is crucial. There is a correlation between the quality of oocytes and both the amount of mtDNA and the amount of ATP. Suboptimal conditions of in vitro maturation (IVM) might lead to changes in the mitochondrial morphology as well as alternations in the expression of genes encoding proteins associated with mitochondrial function. Dysfunctional mitochondria have a lower ability to counteract reactive oxygen species (ROS) production which leads to oxidative stress. The mitochondrial function might be improved with the application of antioxidants and significant expectations are laid on the development of new IVM systems supplemented with mitochondria-targeted reagents. Different types of antioxidants have been tested already on animal models and human rescue IVM oocytes, showing promising results. This review focuses on the recent observations on oocytes' intracellular mitochondrial distribution and on mitochondrial genomes during their maturation, both in vivo and in vitro. Recent mitochondrial supplementation studies, aiming to improve oocyte developmental potential, are summarized.


Asunto(s)
Antioxidantes/metabolismo , Mitocondrias/fisiología , Oocitos/fisiología , Oogénesis , Estrés Oxidativo , Animales , Humanos , Oocitos/citología , Especies Reactivas de Oxígeno/metabolismo
11.
Life (Basel) ; 11(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498399

RESUMEN

The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.

12.
Am J Med Genet A ; 185(1): 112-118, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073519

RESUMEN

Epiphyseal chondrodysplasia, Miura type (ECDM) is a skeletal dysplasia with tall stature and distinctive skeletal features caused by heterozygous NPR2 pathogenic variants. Only four families have been reported. We present a family with five affected individuals (mother, three sons, and daughter). The mother's phenotype was relatively mild: borderline tall stature and elongated halluces operated during childhood. The children were remarkably more severely affected with tall stature, scoliosis, and elongated toes and fingers leading to suspicion of Marfan syndrome. Progressive valgus deformities (at the hips, knees, and ankles) were the main complaints and necessitated orthopedic investigations and surgery. Radiographs showed coxa valga, scoliosis, multiple pseudoepiphyses of the fingers and toes with uneven elongation of the digits and ankle valgus. The two older brothers underwent osteotomies and guided growth for axial deformities and arthrodesis for elongated halluces. Genetic testing confirmed the clinical diagnosis of ECDM: all affected individuals had a heterozygous c.2647G>A (p.Val883Met) NPR2 variant in a highly conserved region in the carboxyl-terminal guanylyl cyclase domain. This two-generation family elucidates the clinical and radiological variability of the disease. These rare cases are important to gain further understanding of the fundamental processes of growth regulation.


Asunto(s)
Epífisis/fisiopatología , Síndrome de Marfan/genética , Osteocondrodisplasias/genética , Receptores del Factor Natriurético Atrial/genética , Niño , Preescolar , Epífisis/diagnóstico por imagen , Femenino , Heterocigoto , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/fisiopatología , Mutación/genética , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/fisiopatología , Fenotipo , Polimorfismo de Nucleótido Simple/genética
13.
Am J Phys Anthropol ; 148(1): 123-38, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22487888

RESUMEN

To fill remaining gaps in mitochondrial DNA diversity in the least surveyed eastern and western flanks of Siberia, 391 mtDNA samples (144 Tubalar from Altai, 87 Even from northeastern Siberia, and 160 Ulchi from the Russian Far East) were characterized via high-resolution restriction fragment length polymorphism/single nucleotide polymorphisms analysis. The subhaplogroup structure was extended through complete sequencing of 67 mtDNA samples selected from these and other related native Siberians. Specifically, we have focused on the evolutionary histories of the derivatives of M and N haplogroups, putatively reflecting different phases of settling Siberia by early modern humans. Population history and phylogeography of the resulting mtDNA genomes, combined with those from previously published data sets, revealed a wide range of tribal- and region-specific mtDNA haplotypes that emerged or diversified in Siberia before or after the last glacial maximum, ∼18 kya. Spatial distribution and ages of the "east" and "west" Eurasian mtDNA haploclusters suggest that anatomically modern humans that originally colonized Altai derived from macrohaplogroup N and came from Southwest Asia around 38,000 years ago. The derivatives of macrohaplogroup M, which largely emerged or diversified within the Russian Far East, came along with subsequent migrations to West Siberia millennia later. The last glacial maximum played a critical role in the timing and character of the settlement of the Siberian subcontinent.


Asunto(s)
Genoma Mitocondrial , Indígenas Norteamericanos/genética , Población Blanca/genética , Antropología Física , Bases de Datos Genéticas , Emigración e Inmigración , Haplotipos , Humanos , Inuk/genética , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Siberia
14.
Am J Hum Genet ; 82(5): 1084-100, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18452887

RESUMEN

Through extended survey of mitochondrial DNA (mtDNA) diversity in the Nganasan, Yukaghir, Chuvantsi, Chukchi, Siberian Eskimos, and Commander Aleuts, we filled important gaps in previously unidentified internal sequence variation within haplogroups A, C, and D, three of five (A-D and X) canonical mtDNA lineages that defined Pleistocenic extension from the Old to the New World. Overall, 515 mtDNA samples were analyzed via high-resolution SNP analysis and then complete sequencing of the 84 mtDNAs. A comparison of the data thus obtained with published complete sequences has resulted in the most parsimonious phylogenetic structure of mtDNA evolution in Siberia-Beringia. Our data suggest that although the latest inhabitants of Beringia are well genetically reflected in the Chukchi-, Eskimo-Aleut-, and Na-Dene-speaking Indians, the direct ancestors of the Paleosiberian-speaking Yukaghir are primarily drawn from the southern belt of Siberia when environmental conditions changed, permitting recolonization the high arctic since early Postglacial. This study further confirms that (1) Alaska seems to be the ancestral homeland of haplogroup A2 originating in situ approximately 16.0 thousand years ago (kya), (2) an additional founding lineage for Native American D, termed here D10, arose approximately 17.0 kya in what is now the Russian Far East and eventually spread northward along the North Pacific Rim. The maintenance of two refugial sources, in the Altai-Sayan and mid-lower Amur, during the last glacial maximum appears to be at odds with the interpretation of limited founding mtDNA lineages populating the Americas as a single migration.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Genética de Población , Indígenas Norteamericanos/genética , Inuk/genética , Regiones Árticas , Variación Genética , Haplotipos , Humanos , Datos de Secuencia Molecular , América del Norte , Filogenia , Siberia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA