Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 608(7921): 80-86, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922501

RESUMEN

Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3.


Asunto(s)
Sequías , Clima Extremo , Inundaciones , Gestión de Riesgos , Cambio Climático/estadística & datos numéricos , Conjuntos de Datos como Asunto , Sequías/prevención & control , Sequías/estadística & datos numéricos , Inundaciones/prevención & control , Inundaciones/estadística & datos numéricos , Humanos , Hidrología , Internacionalidad , Gestión de Riesgos/métodos , Gestión de Riesgos/estadística & datos numéricos , Gestión de Riesgos/tendencias
2.
Nat Commun ; 13(1): 3360, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688995

RESUMEN

Whether disasters influence adaptation actions in cities is contested. Yet, the extant knowledge base primarily consists of single or small-N case studies, so there is no global overview of the evidence on disaster impacts and adaptation. Here, we use regression analysis to explore the effects of disaster frequency and severity on four adaptation action types in 549 cities. In countries with greater adaptive capacity, economic losses increase city-level actions targeting recently experienced disaster event types, as well as actions to strengthen general disaster preparedness. An increase in disaster frequency reduces actions targeting hazard types other than those that recently occurred, while human losses have few effects. Comparisons between cities across levels of adaptive capacity indicate a wealth effect. More affluent countries incur greater economic damages from disasters, but also have higher governance capacity, creating both incentives and opportunities for adaptation measures. While disaster frequency and severity had a limited impact on adaptation actions overall, results are sensitive to which disaster impacts, adaptation action types, and adaptive capacities are considered.


Asunto(s)
Planificación en Desastres , Desastres , Aclimatación , Ciudades , Desastres/prevención & control , Humanos
3.
Ambio ; 50(10): 1798-1808, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33686608

RESUMEN

The sustainability of large dams has been questioned on several grounds. One aspect that has been less explored is that the development of dams and reservoirs often enables agricultural expansion and urban growth, which in turn increase water consumption. As such, dam development influences, while being influenced by, the spatial and temporal distribution of both supply and demand of water resources. In this paper, we explore the interplay between large dams, patterns of population growth and agricultural expansion in the United States over the past two centuries. Based on a large-scale analysis of spatial and temporal trends, we identify three distinct phases, in which different processes dominated the interplay. Then, we focus on agricultural water use in the Southwest region (Arizona, California and Nevada) and explore chicken-and-egg dynamics where water supply partly meets and partly fuels water demand. Lastly, we show that the legacy of dams in the United States consists of a lock-in condition characterized by high levels of water consumption, especially in the Southwest, which leads to severe water crises and groundwater overexploitation when droughts occur.


Asunto(s)
Agua Subterránea , Abastecimiento de Agua , Sequías , Crecimiento Demográfico , Estados Unidos , Recursos Hídricos
4.
Nat Commun ; 12(1): 193, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420042

RESUMEN

Natural hazard events provide opportunities for policy change to enhance disaster risk reduction (DRR), yet it remains unclear whether these events actually fulfill this transformative role around the world. Here, we investigate relationships between the frequency (number of events) and severity (fatalities, economic losses, and affected people) of natural hazards and DRR policy change in 85 countries over eight years. Our results show that frequency and severity factors are generally unassociated with improved DRR policy when controlling for income-levels, differences in starting policy values, and hazard event types. This is a robust result that accounts for event frequency and different hazard severity indicators, four baseline periods estimating hazard impacts, and multiple policy indicators. Although we show that natural hazards are unassociated with improved DRR policy globally, the study unveils variability in policy progress between countries experiencing similar levels of hazard frequency and severity.

5.
J Environ Manage ; 248: 109052, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31466185

RESUMEN

It is crucial to be able to forecast flows and overflows in urban drainage systems to build good and effective real-time control and warning systems. Due to computational constraints, it may often be unfeasible to employ detailed 1D hydrodynamic models for real-time purposes, and surrogate models can be used instead. In rural hydrology, forecast models are usually built or calibrated using long historical time series of, for example, flow or level observations, but such series are typically not available for the ever-changing urban drainage systems. In the current study, we therefore used a fast, reservoir-based surrogate forecast model constructed from a 1D hydrodynamic urban drainage model. Thus, we did not rely directly on historical time series data. Forecast models should preferably be able to update their internal states based on observations to ensure the best initial conditions for each forecast. We therefore used the Ensemble Kalman filter to update the surrogate model before each forecast. Water level or flow observations were assimilated into the model either directly, or indirectly using rating curves. The model forecasts were validated against observed flows and overflows. The results showed that model updating improved the forecasts up to 2 h ahead, but also that updating using water level observations resulted in better flow forecasts than assimilation based on flow data. Furthermore, updating with water level observations was insensitive to changes in the noise formulation used for the Ensemble Kalman filter, meaning that the method is suitable for operational settings where there is often little time and data for fine-tuning.


Asunto(s)
Hidrología , Modelos Teóricos , Predicción
6.
Sci Adv ; 4(8): eaar5779, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30140738

RESUMEN

To understand the spatiotemporal changes of flood risk, we need to determine the way in which humans adapt and respond to flood events. One adaptation option consists of resettling away from flood-prone areas to prevent or reduce future losses. We use satellite nighttime light data to discern the relationship between long-term changes in human proximity to rivers and the occurrence of catastrophic flood events. Moreover, we explore how these relationships are influenced by different levels of structural flood protection. We found that societies with low protection levels tend to resettle further away from the river after damaging flood events. Conversely, societies with high protection levels show no significant changes in human proximity to rivers. Instead, such societies continue to rely heavily on structural measures, reinforcing flood protection and quickly resettling in flood-prone areas after a flooding event. Our work reveals interesting aspects of human adaptation to flood risk and offers key insights for comparing different risk reduction strategies. In addition, this study provides a framework that can be used to further investigate human response to floods, which is relevant as urbanization of floodplains continues and puts more people and economic assets at risk.


Asunto(s)
Aclimatación , Cambio Climático , Planificación en Desastres/estadística & datos numéricos , Planificación en Desastres/normas , Inundaciones/estadística & datos numéricos , Ríos , Composición Familiar , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...