Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 199(15-16): 1968-1972, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819306

RESUMEN

In proton therapy, most treatment planning systems (TPS) use a fixed relative biological effectiveness (RBE) of 1.1 all along the depth-dose profile. Innovative TPS are now investigated considering the variability of RBE with radiation quality. New TPS need an experimental verification in the quality assurance (QA) routine in clinics, but RBE data are usually obtained with radiobiological measurements that are time consuming and not suitable for daily QA. Microdosimetry is a useful tool based on physical measurements which can monitor the radiation quality. Several microdosimeters are available in different research institutions, which could potentially be used for the QA in TPS. In this study, the response functions of five detectors in the same 62-MeV proton Spread Out Bragg Peak is compared in terms of spectral distributions and their average values and microdosimetric RBE. Their different response function has been commented and must be considered in the clinical practice.


Asunto(s)
Terapia de Protones , Protones , Radiometría , Efectividad Biológica Relativa
2.
Phys Med Biol ; 67(16)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35679848

RESUMEN

Objective.In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of4He ion.Approach.Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy,yD¯andy¯F, derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter).Main results.A good agreement ofL¯dTotalandL¯tTotalwithy¯Dandy¯Texperimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated4He ion beam, was found.Significance.The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.


Asunto(s)
Transferencia Lineal de Energía , Radiometría , Algoritmos , Iones , Método de Montecarlo , Protones , Radiometría/métodos
3.
Phys Med ; 89: 226-231, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34425513

RESUMEN

The aim of the NEPTUNE (Nuclear process-driven Enhancement of Proton Therapy UNravEled) project is to investigate in detail both the physical and radiobiological phenomena that could justify an increase of the proton-induced cytogenetic effects in cells irradiated in presence of an agent containing natural boron. In this work, a double-stage silicon telescope coupled to different boron converters was irradiated at the CATANA proton therapy facility (INFN-LNS) for studying the proton boron fusion and the neutron boron capture reactions by discriminating secondary particles from primary protons. Different boron targets were developed by depositing boric acid, enriched with a higher than 99% content of 10B or 11B, on a 50 µm thick PolyMethilMetacrylate (PMMA) substrate. The 10B target allows to evaluate the contribution of lithium and alpha particles produced by the boron neutron capture reaction triggered by secondary thermal neutrons, while the 11B target is exploited for studying the effect of the p + 11B → 3α nuclear reaction directly triggered by primary protons. Experimental results clearly show the presence of alpha particles from both the reactions. The silicon telescope is capable of discriminating, by means of the so-called "scatter plots", the contribution of alpha particles originated by thermal neutrons on 10B with respect to the ones produced by protons impinging on 11B. Although a reliable quantitative study of the alpha production rate has not been achieved yet, this work demonstrates that low energy and, therefore, high-LET particles from both the reactions can be measured.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Terapia de Protones , Boro , Neutrones , Protones
4.
Phys Med Biol ; 65(24): 245018, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33086208

RESUMEN

Proton beams are widely used worldwide to treat localized tumours, the lower entrance dose and no exit dose, thus sparing surrounding normal tissues, being the main advantage of this treatment modality compared to conventional photon techniques. Clinical proton beam therapy treatment planning is based on the use of a general relative biological effectiveness (RBE) of 1.1 along the whole beam penetration depth, without taking into account the documented increase in RBE at the end of the depth dose profile, in the Bragg peak and beyond. However, an inaccurate estimation of the RBE can cause both underdose or overdose, in particular it can cause the unfavourable situation of underdosing the tumour and overdosing the normal tissue just beyond the tumour, which limits the treatment success and increases the risk of complications. In view of a more precise dose delivery that takes into account the variation of RBE, experimental microdosimetry offers valuable tools for the quality assurance of LET or RBE-based treatment planning systems. The purpose of this work is to compare the response of two different microdosimetry systems: the mini-TEPC and the MicroPlus-Bridge detector. Microdosimetric spectra were measured across the 62 MeV spread out Bragg peak of CATANA with the mini-TEPC and with the Bridge microdosimeter. The frequency and dose distributions of lineal energy were compared and the different contributions to the spectra were analysed, discussing the effects of different site sizes and chord length distributions. The shape of the lineal energy distributions measured with the two detectors are markedly different, due to the different water-equivalent sizes of the sensitive volumes: 0.85 µm for the TEPC and 17.3 µm for the silicon detector. When the Loncol's biological weighting function is applied to calculate the microdosimetric assessment of the RBE, both detectors lead to results that are consistent with biological survival data for glioma U87 cells. Both the mini-TEPC and the MicroPlus-Bridge detector can be used to assess the RBE variation of a 62 MeV modulated proton beam along its penetration depth. The microdosimetric assessment of the RBE based on the Loncol's weighting function is in good agreement with radiobiological results when the 10% biological uncertainty is taken into account.


Asunto(s)
Terapia de Protones , Radiometría , Efectividad Biológica Relativa , Humanos , Silicio
5.
Radiat Prot Dosimetry ; 183(1-2): 177-181, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30535177

RESUMEN

The tissue-equivalent proportional counter (TEPC) is the most accurate device for measuring the microdosimetric properties of a particle beam but, since the lower operation limit of common TEPCs is ~0.3 µm, no detailed information on the track structure of the impinging particles can be obtained. The pattern of particle interactions at the nanometric level is measured directly by only three different nanodosimeters worldwide: practical instruments are not yet available. In order to partially fill the gap between microdosimetry and track-nanodosimetry, a low-pressure avalanche-confinement TEPC was designed and constructed for simulating tissue-equivalent sites down to the nanometric region. The present paper aims at describing the response of this TEPC in the range 0.3 µm-25 nm to a 62 MeV/n 4He ion beam. The experimental results, for depths near the Bragg peak, show good agreement with FLUKA simulations and suggest that, for smaller depths, the distribution is highly influenced by secondary electrons.


Asunto(s)
Helio/química , Nanotecnología , Radiometría/instrumentación , Simulación por Computador , Diseño de Equipo , Modelos Teóricos
6.
Radiat Prot Dosimetry ; 180(1-4): 172-176, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036508

RESUMEN

Tissue equivalent proportional counter (TEPC) is the most accurate device for measuring the microdosimetric properties of a particle beam, nevertheless no detailed information on the track structure of the impinging particles can be obtained, since the lower operation limit of common TEPCs is ~0.3 µm. On the other hand, the pattern of particle interactions at the nanometer level is measured by only three different nanodosimeters worldwide: practical instruments are not yet available. In order to partially fill the gap between microdosimetry and track-nanodosimetry, a low-pressure avalanche-confinement TEPC was recently designed and constructed for simulating tissue-equivalent sites down to the nanometric region. The present article aims at describing the response of this newly developed TEPC in the range 0.3 µm-25 nm against a fast neutron field from a 241Am-Be source and a quasi-monoenergetic neutron beam. The experimental results are in good agreement with Monte Carlo simulations carried out with the FLUKA code.


Asunto(s)
Microtecnología/instrumentación , Nanotecnología/instrumentación , Neutrones , Monitoreo de Radiación/instrumentación , Protección Radiológica/instrumentación , Americio/análisis , Diseño de Equipo , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...