Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36297139

RESUMEN

(1) Background: Terrestrial mammals in protected areas have been identified as a potential source of antimicrobial-resistant bacteria. Studies on antimicrobial resistance in gorillas have already been conducted. Thus, this study aimed to describe the phylogroups, pathotypes and prevalence of antimicrobial resistance of Escherichia coli isolated from western lowland gorilla's faeces living in MDNP. (2) Materials and Methods: Ninety-six faecal samples were collected from western lowland gorillas (Gorilla gorilla gorilla) during daily monitoring in the MDNP. Sixty-four E. coli isolates were obtained and screened for phylogenetic and pathotype group genes by polymerase chain reaction (PCR) after DNA extraction. In addition, antimicrobial susceptibility was determined by the disk diffusion method on Mueller Hinton agar. (3) Results: Sixty-four (64%) isolates of E. coli were obtained from samples. A high level of resistance to the beta-lactam family, a moderate rate for fluoroquinolone and a low rate for aminoglycoside was obtained. All E. coli isolates were positive in phylogroup PCR with a predominance of A (69% ± 11.36%), followed by B2 (20% ± 19.89%) and B1 (10% ± 8.90%) and low prevalence for D (1% ± 3.04%). In addition, twenty E. coli isolates (31%) were positive for pathotype PCR, such as EPEC (85% ± 10.82%) and EPEC/EHEC (15% ± 5.18%) that were obtained in this study. The majority of these MDR E. coli (DECs) belonged to phylogenetic group A, followed by MDR E. coli (DECs) belonging to group B2. (4) Conclusion: This study is the first description of MDR E. coli (DECs) assigned to phylogroup A in western lowland gorillas from the MDNP in Gabon. Thus, wild gorillas in MDNP could be considered as asymptomatic carriers of potential pathogenic MDR E. coli (DECs) that may present a potential risk to human health.

2.
PLoS One ; 16(10): e0257994, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34637441

RESUMEN

Data on the prevalence of antibiotic resistance in Enterobacteriaceae in African wildlife are still relatively limited. The aim of this study was to estimate the prevalence of phenotypic intrinsic and acquired antimicrobial resistance of enterobacteria from several species of terrestrial wild mammals in national parks of Gabon. Colony culture and isolation were done using MacConkey agar. Isolates were identified using the VITEK 2 and MALDI-TOF methods. Antibiotic susceptibility was analysed and interpreted according to the European Committee on Antimicrobial Susceptibility Testing guidelines. The preliminary test for ESBL-producing Enterobacteriaceae was performed by replicating enterobacterial colonies on MacConkey agar supplemented with 2 mg/L cefotaxime (MCA+CTX). Extended-spectrum beta-lactamase (ESBL) production was confirmed with the double-disc synergy test (DDST). The inhibition zone diameters were read with SirScan. Among the 130 bacterial colonies isolated from 125 fecal samples, 90 enterobacterial isolates were identified. Escherichia coli (61%) was the most prevalent, followed by Enterobacter cloacae (8%), Proteus mirabilis (8%), Klebsiella variicola (7%), Klebsiella aerogenes (7%), Klebsiella oxytoca (4%), Citrobacter freundii (3%), Klebsiella pneumoniae (1%) and Serratia marcescens (1%). Acquired resistance was carried by E. coli (11% of all E. coli isolates) and E. cloacae (3% of all E. cloacae) isolates, while intrinsic resistance was detected in all the other resistant isolates (n = 31); K. variicola, K. oxytoca, K. pneumoniae, E. cloacae, K. aerogenes, S. marcescens and P. mirabilis). Our data show that most strains isolated in protected areas in Gabon are wild type isolates and carry intrinsic resistance rather than acquired resistance.


Asunto(s)
Animales Salvajes/microbiología , Antibacterianos/farmacología , Enterobacter cloacae/efectos de los fármacos , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/veterinaria , Escherichia coli/efectos de los fármacos , Parques Recreativos , Fenotipo , Resistencia betalactámica/genética , beta-Lactamas/farmacología , Animales , Enterobacter cloacae/enzimología , Enterobacter cloacae/aislamiento & purificación , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Heces/microbiología , Gabón/epidemiología , Gorilla gorilla/microbiología , Mandrillus/microbiología , Pruebas de Sensibilidad Microbiana , Prevalencia , beta-Lactamasas/metabolismo
3.
Infect Drug Resist ; 14: 585-594, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33623399

RESUMEN

INTRODUCTION: Urinary tract infection is one of the major causes of consultation, microbiologic exploration, intensive use of antibiotics worldwide, and the second leading cause of clinical consultation in community practice. Many bacteria play a role in the urinary tract infections etiology, including Enterobacteriaceae such as Escherichia coli (E. coli) and Klebsiella spp. OBJECTIVE: The study's main objective was to examine the epidemiology of E. coli and Klebsiella pneumoniae (K. pneumoniae) uropathogenic strains resistant to antibiotics in Franceville. METHODOLOGY: The study was carried out between January 2018 and June 2019 in Franceville South-East Gabon. We examined a total of 1086 cytobacteriological urine samples. The identification of E. coli and K. pneumoniae strains was carried out using the Vitek-2 compact automated system and the antibiogram with the disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing recommendations. RESULTS: The prevalence of urinary tract infections was 29.2% (317/1086), of which 25.1% and 4.1% were mono-infections and co-infections, respectively. The prevalence of UTIs with E. coli was 28.7% (91/317) with a predominance of isolation in women. K. pneumoniae was responsible for 16.2% (61/317) of UTIs. E. coli and K. pneumoniae Uropathogenic strains showed resistance to beta-lactams, quinolones and cotrimoxazole, whereas Nitrofurantoin, Amikacin, Imipenem and Ertapenem were the most active antibiotics against E. coli and K. pneumoniae uropathogenic strains. CONCLUSION: This study showed a high prevalence of urinary tract infections with a major implication of E.coli and K. pneumoniae strains. E. coli and K. pneumoniae presented high frequency of resistance to antibiotics, highlighting the need to adapt their use accordingly at the local level.

5.
Vet Med Int ; 2020: 5163493, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733665

RESUMEN

Antibiotic resistance occurs in the environment by multiplication and the spread of multidrug-resistant bacteria that would be due to an improper and incorrect use of antibiotics in human and veterinary medicine. The aim of this study was to establish the prevalence of E.coli producing Extended-Spectrum beta-Lactamase (ESBL) antibiotics from rats and gregarious animals in a semirural area of Gabon and to evaluate the origin of a resistance distribution in the environment from animal feces. The bacterial culture was carried out, and the identification of E. coli strains on a specific medium and the antibiotic susceptibility tests allowed establishing the prevalence. Characterization of resistance genes was performed by gene amplification after DNA extraction. On 161 feces collected in rats, 32 strains were isolated, and 11 strains of E. coli produced ESBL with a prevalence of 34.37%. Molecular tests showed that CTX-M genes 214 bp were identified in rats. The presence of CTX-M genes could have a human origin. So, the rats can carry ESBL-producing Enterobacteriaceae which poses a risk to human health and pets in this region of Gabon.

6.
Microorganisms ; 8(1)2020 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963801

RESUMEN

In Gabon, terrestrial mammals of protected areas have been identified as a possible source of antibiotic-resistant bacteria. Some studies on antibiotic resistance in bats have already been carried out. The main goal of our study was to detect extended-spectrum beta-lactamases (ESBLs) that are produced by enterobacteria from bats in the Makokou region in Gabon. Sixty-eight fecal samples were obtained from 68 bats caught in the forests located 1 km from the little town of Makokou. After culture and isolation, 66 Gram-negative bacterial colonies were obtained. The double-disk diffusion test confirmed the presence of ESBLs in six (20.69%) Escherichia coli isolates, four (13.79%) Klebsiella pneumoniae isolates, and one (3.45%) Enterobacter cloacae isolate. The analysis based on the nucleotide sequences of the ESBL resistance genes showed that all cefotaximase-Munichs (CTX-Ms) were CTX-M-15 and that all sulfhydryl variables (SHVs) were SHV-11: 54.54% ESBL (CTX-M-15)-producing E. coli, 9.09% ESBL (CTX-M-15)-producing K. pneumoniae, 27.27% ESBL (CTX-M-15, SHV-11)-producing K. pneumoniae, and 9.09% ESBL (CTX-M-15)-producing E. cloacae. This study shows for the first time the presence of multiresistant ESBL-producing enterobacteria in fruit bats in Makokou.

7.
Microorganisms ; 7(4)2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987363

RESUMEN

Despite the essential role of Bifidobacterium in health-promoting gut bacteria in humans, little is known about their functions in wild animals, especially non-human primates. It is difficult to determine in vivo the function of Bifidobacterium in wild animals due to the limited accessibility of studying target animals in natural conditions. However, the genomic characteristics of Bifidobacterium obtained from the feces of wild animals can provide insight into their functionality in the gut. Here, we analyzed the whole genomes of 12 B. moukalabense strains isolated from seven feces samples of wild western lowland gorillas (Gorilla gorilla gorilla), three samples of wild central chimpanzees (Pan troglodytes troglodytes) and two samples of wild forest elephants (Loxodonta cyclotis) in Moukalaba-Doudou National Park, Gabon. In addition, we analyzed the fecal bacterial communities of six wild western lowland gorillas by meta 16S rRNA gene analyses with next generation sequencing. Although the abundance of the genus Bifidobacterium was as low as 0.2% in the total reads, a whole genome analysis of B. moukalabense suggested its contribution digestion of food and nutrition of frugivore/folivore animals. Specifically, the whole genome analysis indicated the involvement of B. moukalabense in hemicellulose degradation for short chain fatty acid production and nucleic acid utilization as nitrogen resources. In comparison with human-associated Bifidobacterium spp., genes for carbohydrate transport and metabolism are not conserved in these wild species. In particular the glycosidases, which are found in all 12 strains of B. moukalabense, were variably detected, or not detected, in human-associated species.

8.
Microorganisms ; 6(3)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110987

RESUMEN

Lactic acid bacteria (LAB) reside in a wide range of mammals, such as autochthonous intestinal bacteria. In this paper, we present the phenotypic and phylogenetic characteristics of gorilla-specific LAB. Lactobacillus gorillae-previously isolated from the wild and captive western lowland gorillas (Gorilla gorilla gorilla)-were successfully isolated from wild mountain gorillas (Gorilla gorilla beringei) in addition to other captive and wild western lowland gorillas. The strains from wild gorillas could ferment D-xylose, arbutine, cellobiose, and trehalose better than those from captive gorillas. By contrast, tolerance to NaCl was higher in isolates from captive gorillas than in those from wild gorillas. This tendency may have been induced by regular foods in zoos, which contain sufficient amount of salts but less amount of indigestible fiber and plant secondary metabolites compared to foods in the wild. All strains of L. gorillae showed inhibitory activities to enteric pathogenic bacteria; however, the activity was significantly higher for strains from wild gorillas than for those from captive gorillas. This may have been induced by the captive condition with routine veterinary intervention. Since L. gorillae can grow in the gastrointestinal tract of gorillas in captivity, the strains from wild mountain gorillas are potential probiotics for gorillas under captive conditions.

9.
J Vet Med Sci ; 77(5): 619-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25649412

RESUMEN

Prevalence of drug-resistant bacteria in wildlife can reveal the actual level of anthropological burden on the wildlife. In this study, we isolated two multiple drug-resistant strains, GG6-2 and GG6-1-1, from 27 fresh feces of wild western lowland gorillas in Moukalaba-Doudou National Park, Gabon. Isolates were identified as Achromobacter xylosoxidans and Providencia sp., respectively. Minimum inhibitory concentrations of the following 12 drugs-ampicillin (ABPC), cefazolin (CEZ), cefotaxime (CTX), streptomycin (SM), gentamicin (GM), kanamycin (KM), tetracycline (TC), nalidixic acid (NA), ciprofloxacin (CPFX), colistin (CL), chloramphenicol (CP) and trimethoprim (TMP)-were determined. Isolate GG6-2 was resistant to all antimicrobials tested and highly resistant to CTX, SM, TC, NA and TMP. Isolate GG6-1-1 was resistant to ABPC, CEZ, TC, CL, CP and TMP.


Asunto(s)
Achromobacter denitrificans/efectos de los fármacos , Animales Salvajes , Farmacorresistencia Bacteriana Múltiple , Heces/microbiología , Gorilla gorilla/microbiología , Providencia/efectos de los fármacos , Achromobacter denitrificans/aislamiento & purificación , Animales , Gabón/epidemiología , Providencia/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...