Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 7(6): 896-908, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637329

RESUMEN

Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021. Our platform facilitated viral variant isolation, rapid resolution of variant fitness using nasopharyngeal swabs and ranking of evasion of neutralizing antibodies. In late 2021, variant of concern Omicron (B1.1.529) emerged. Using our platform, we detected and characterized SARS-CoV-2 VOC Omicron. We show that Omicron effectively evades neutralization antibodies and has a different entry route that is TMPRSS2-independent. Our low-cost platform is available to all and can detect all variants of SARS-CoV-2 studied so far, with the main limitation being that our platform still requires appropriate biocontainment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Australia , COVID-19/diagnóstico , Humanos , Pandemias , SARS-CoV-2/genética
2.
Viruses ; 13(6)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207354

RESUMEN

Gene/cell therapies are promising strategies for the many presently incurable diseases. A key step in this process is the efficient delivery of genes and gene-editing enzymes to many cell types that may be resistant to lentiviral vector transduction. Herein we describe tuning of a lentiviral gene therapy platform to focus on genetic modifications of resting CD4+ T cells. The motivation for this was to find solutions for HIV gene therapy efforts. Through selection of the optimal viral envelope and further modification to its expression, lentiviral fusogenic delivery into resting CD4+ T cells exceeded 80%, yet Sterile Alpha Motif and HD domain 1 (SAMHD1) dependent and independent intracellular restriction factors within resting T cells then dominate delivery and integration of lentiviral cargo. Overcoming SAMHD1-imposed restrictions, only observed up to 6-fold increase in transduction, with maximal gene delivery and expression of 35%. To test if the biologically limiting steps of lentiviral delivery are reverse transcription and integration, we re-engineered lentiviral vectors to simply express biologically active mRNA to direct transgene expression in the cytoplasm. In this setting, we observed gene expression in up to 65% of resting CD4+ T cells using unconcentrated MS2 lentivirus-like particles (MS2-LVLPs). Taken together, our findings support a gene therapy platform that could be readily used in resting T cell gene editing.


Asunto(s)
Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Lentivirus/genética , Fase de Descanso del Ciclo Celular , Transgenes , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citometría de Flujo , Genotipo , Humanos , Linfocitos T/metabolismo , Transducción Genética
3.
Traffic ; 18(6): 392-410, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28321960

RESUMEN

CD4 T cells are important cellular targets for HIV-1, yet the primary site of HIV fusion remains unresolved. Candidate fusion sites are either the plasma membrane or from within endosomes. One area of investigation compounding the controversy of this field, is the role of the protein dynamin in the HIV life cycle. To understand the role of dynamin in primary CD4 T cells we combined dynamin inhibition with a series of complementary assays based on single particle tracking, HIV fusion, detection of HIV DNA products and active viral transcription. We identify 3 levels of dynamin influence on the HIV life cycle. Firstly, dynamin influences productive infection by preventing cell cycle progression. Secondly, dynamin influences endocytosis rates and increases the probability of endosomal fusion. Finally, we provide evidence in resting CD4 T cells that dynamin directly regulates the HIV fusion reaction at the plasma membrane. We confirm this latter observation using 2 divergent dynamin modulating compounds, one that enhances dynamin conformations associated with dynamin ring formation (ryngo-1-23) and the other that preferentially targets dynamin conformations that appear in helices (dyngo-4a). This in-depth understanding of dynamin's roles in HIV infection clarifies recent controversies and furthermore provides evidence for dynamin regulation specifically in the HIV fusion reaction.


Asunto(s)
Dinaminas/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Internalización del Virus
4.
Mol Ther Methods Clin Dev ; 5: 16066, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790625

RESUMEN

While current antiretroviral therapy has significantly improved, challenges still remain in life-long targeting of HIV-1 reservoirs. Lentiviral gene therapy has the potential to deliver protective genes into the HIV-1 reservoir. However, inefficient reverse transcription (RT) occurs in HIV-1 reservoirs during lentiviral gene delivery. The viral protein Vpx is capable of increasing lentiviral RT by antagonizing the restriction factor SAMHD1. Incorporating Vpx into lentiviral vectors could substantially increase gene delivery into the HIV-1 reservoir. The feasibility of this Vpx approach was tested in resting cell models utilizing macrophages and dendritic cells. Our results showed Vpx exposure led to increased permissiveness of cells over a period that exceeded 2 weeks. Consequently, significant lower potency of HIV-1 antiretrovirals inhibiting RT and integration was observed. When Vpx was incorporated with anti-HIV-1 genes inhibiting either pre-RT or post-RT stages of the viral life-cycle, transduction levels significantly increased. However, a stronger antiviral effect was only observed with constructs that inhibit pre-RT stages of the viral life cycle. In conclusion this study demonstrates a way to overcome the major delivery obstacle of gene delivery into HIV-1 reservoir cell types. Importantly, incorporating Vpx with pre-RT anti-HIV-1 genes, demonstrated the greatest protection against HIV-1 infection.

5.
Curr HIV/AIDS Rep ; 10(1): 3-11, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23242701

RESUMEN

Lentiviruses are characterized by their ability to infect resting cells, such as CD4 T cells, macrophages and dendritic cells (DC). Cells of myeloid lineage, which herein we include including monocytes, macrophages, and dendritic cells, play a pivotal role in HIV infection by not only promoting transmission and spread but also serving as viral reservoirs. However, the recent discovery of the HIV restriction factor SAMHD1 within myeloid cells has again led us to question the role of this lineage both in HIV transmission and pathogenesis. Herein we will summarize what the potential role of myeloid cells in HIV pathogenesis is and how recent observations have or haven't reshaped this view. Finally we highlight the idea that cells of myeloid lineage are quality rather than quantity HIV substrates. Thus, whilst is may indeed be difficult for a lentivirus like HIV to infect a resting cell like a macrophage and/or Dendritic cell, there are significant benefits in doing so, even at low frequency.


Asunto(s)
Infecciones por VIH/transmisión , VIH-1/patogenicidad , Proteínas de Unión al GTP Monoméricas/fisiología , Células Mieloides/fisiología , Animales , Modelos Animales de Enfermedad , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Macaca mulatta , Células Mieloides/virología , Seudópodos/fisiología , Proteína 1 que Contiene Dominios SAM y HD , Ensamble de Virus/fisiología
6.
PLoS Pathog ; 8(6): e1002762, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685410

RESUMEN

Paramount to the success of persistent viral infection is the ability of viruses to navigate hostile environments en route to future targets. In response to such obstacles, many viruses have developed the ability of establishing actin rich-membrane bridges to aid in future infections. Herein through dynamic imaging of HIV infected dendritic cells, we have observed how viral high-jacking of the actin/membrane network facilitates one of the most efficient forms of HIV spread. Within infected DC, viral egress is coupled to viral filopodia formation, with more than 90% of filopodia bearing immature HIV on their tips at extensions of 10 to 20 µm. Live imaging showed HIV filopodia routinely pivoting at their base, and projecting HIV virions at µm.sec⁻¹ along repetitive arc trajectories. HIV filopodial dynamics lead to up to 800 DC to CD4 T cell contacts per hour, with selection of T cells culminating in multiple filopodia tethering and converging to envelope the CD4 T-cell membrane with budding HIV particles. Long viral filopodial formation was dependent on the formin diaphanous 2 (Diaph2), and not a dominant Arp2/3 filopodial pathway often associated with pathogenic actin polymerization. Manipulation of HIV Nef reduced HIV transfer 25-fold by reducing viral filopodia frequency, supporting the potency of DC HIV transfer was dependent on viral filopodia abundance. Thus our observations show HIV corrupts DC to CD4 T cell interactions by physically embedding at the leading edge contacts of long DC filopodial networks.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Dendríticas/virología , VIH , Interacciones Huésped-Parásitos/fisiología , Seudópodos/virología , Linfocitos T CD4-Positivos/virología , Línea Celular , Forminas , Humanos , Microscopía Electrónica de Transmisión , Seudópodos/ultraestructura , Virión/metabolismo , Virión/ultraestructura
7.
Future Microbiol ; 5(6): 883-900, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20521934

RESUMEN

Human cytomegalovirus (HCMV) is a clinically important and ubiquitous herpesvirus. Following primary productive infection the virus is not completely eliminated from the host, but instead establishes a lifelong latent infection without detectable virus production, from where it can reactivate at a later stage to generate new infectious virus. Reactivated HCMV often results in life-threatening disease in immunocompromised individuals, particularly allogeneic stem cell and solid organ transplant recipients, where it remains one of the most difficult opportunistic pathogens that complicate the care of these patients. The ability of HCMV to establish and reactivate from latency is central to its success as a human pathogen, yet latency remains very poorly understood. This article will cover several aspects of HCMV latency, with a focus on current understanding of viral gene expression and functions during this phase of infection.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Regulación Viral de la Expresión Génica , Latencia del Virus , Citomegalovirus/patogenicidad , Humanos , Activación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...