Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Neonatal Screen ; 9(3)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37754778

RESUMEN

The collection of dried blood spots (DBS) facilitates newborn screening for a variety of rare, but very serious conditions in healthcare systems around the world. Sub-punches of varying sizes (1.5-6 mm) can be taken from DBS specimens to use as inputs for a range of biochemical assays. Advances in DNA sequencing workflows allow whole-genome sequencing (WGS) libraries to be generated directly from inputs such as peripheral blood, saliva, and DBS. We compared WGS metrics obtained from libraries generated directly from DBS to those generated from DNA extracted from peripheral blood, the standard input for this type of assay. We explored the flexibility of DBS as an input for WGS by altering the punch number and size as inputs to the assay. We showed that WGS libraries can be successfully generated from a variety of DBS inputs, including a single 3 mm or 6 mm diameter punch, with equivalent data quality observed across a number of key metrics of importance in the detection of gene variants. We observed no difference in the performance of DBS and peripheral-blood-extracted DNA in the detection of likely pathogenic gene variants in samples taken from individuals with cystic fibrosis or phenylketonuria. WGS can be performed directly from DBS and is a powerful method for the rapid discovery of clinically relevant, disease-causing gene variants.

2.
Genome Med ; 12(1): 72, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807235

RESUMEN

BACKGROUND: DNA originating from degenerate tumour cells can be detected in the circulation in many tumour types, where it can be used as a marker of disease burden as well as to monitor treatment response. Although circulating tumour DNA (ctDNA) measurement has prognostic/predictive value in metastatic prostate cancer, its utility in localised disease is unknown. METHODS: We performed whole-genome sequencing of tumour-normal pairs in eight patients with clinically localised disease undergoing prostatectomy, identifying high confidence genomic aberrations. A bespoke DNA capture and amplification panel against the highest prevalence, highest confidence aberrations for each individual was designed and used to interrogate ctDNA isolated from plasma prospectively obtained pre- and post- (24 h and 6 weeks) surgery. In a separate cohort (n = 189), we identified the presence of ctDNA TP53 mutations in preoperative plasma in a retrospective cohort and determined its association with biochemical- and metastasis-free survival. RESULTS: Tumour variants in ctDNA were positively identified pre-treatment in two of eight patients, which in both cases remained detectable postoperatively. Patients with tumour variants in ctDNA had extremely rapid disease recurrence and progression compared to those where variants could not be detected. In terms of aberrations targeted, single nucleotide and structural variants outperformed indels and copy number aberrations. Detection of ctDNA TP53 mutations was associated with a significantly shorter metastasis-free survival (6.2 vs. 9.5 years (HR 2.4; 95% CIs 1.2-4.8, p = 0.014). CONCLUSIONS: CtDNA is uncommonly detected in localised prostate cancer, but its presence portends more rapidly progressive disease.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Anciano , Progresión de la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Estimación de Kaplan-Meier , Biopsia Líquida , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/mortalidad , Análisis de Secuencia de ADN , Proteína p53 Supresora de Tumor/genética
3.
J Clin Invest ; 123(7): 2965-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23778141

RESUMEN

Adenoid cystic carcinoma (ACC) is a rare malignancy that can occur in multiple organ sites and is primarily found in the salivary gland. While the identification of recurrent fusions of the MYB-NFIB genes have begun to shed light on the molecular underpinnings, little else is known about the molecular genetics of this frequently fatal cancer. We have undertaken exome sequencing in a series of 24 ACC to further delineate the genetics of the disease. We identified multiple mutated genes that, combined, implicate chromatin deregulation in half of cases. Further, mutations were identified in known cancer genes, including PIK3CA, ATM, CDKN2A, SF3B1, SUFU, TSC1, and CYLD. Mutations in NOTCH1/2 were identified in 3 cases, and we identify the negative NOTCH signaling regulator, SPEN, as a new cancer gene in ACC with mutations in 5 cases. Finally, the identification of 3 likely activating mutations in the tyrosine kinase receptor FGFR2, analogous to those reported in ovarian and endometrial carcinoma, point to potential therapeutic avenues for a subset of cases.


Asunto(s)
Carcinoma Adenoide Quístico/genética , Exoma , Neoplasias de las Glándulas Salivales/genética , Análisis Mutacional de ADN , Genes Relacionados con las Neoplasias , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Polimorfismo de Nucleótido Simple
4.
Nucleic Acids Res ; 41(12): 6119-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630320

RESUMEN

The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.


Asunto(s)
Ciclo Celular/genética , Variaciones en el Número de Copia de ADN , Blastómeros/química , Línea Celular Tumoral , Aberraciones Cromosómicas , Genoma Humano , Genómica/métodos , Técnicas de Genotipaje , Humanos , Mutación , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Análisis de la Célula Individual
5.
Sci Transl Med ; 4(137): 137ra75, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22674553

RESUMEN

Most anticancer drugs entering clinical trials fail to achieve approval from the U.S. Food and Drug Administration. Drug development is hampered by the lack of preclinical models with therapeutic predictive value. Herein, we report the development and validation of a tumorgraft model of renal cell carcinoma (RCC) and its application to the evaluation of an experimental drug. Tumor samples from 94 patients were implanted in the kidneys of mice without additives or disaggregation. Tumors from 35 of these patients formed tumorgrafts, and 16 stable lines were established. Samples from metastatic sites engrafted at higher frequency than those from primary tumors, and stable engraftment of primary tumors in mice correlated with decreased patient survival. Tumorgrafts retained the histology, gene expression, DNA copy number alterations, and more than 90% of the protein-coding gene mutations of the corresponding tumors. As determined by the induction of hypercalcemia in tumorgraft-bearing mice, tumorgrafts retained the ability to induce paraneoplastic syndromes. In studies simulating drug exposures in patients, RCC tumorgraft growth was inhibited by sunitinib and sirolimus (the active metabolite of temsirolimus in humans), but not by erlotinib, which was used as a control. Dovitinib, a drug in clinical development, showed greater activity than sunitinib and sirolimus. The routine incorporation of models recapitulating the molecular genetics and drug sensitivities of human tumors into preclinical programs has the potential to improve oncology drug development.


Asunto(s)
Bencimidazoles/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Quinolonas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nature ; 486(7403): 400-4, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22722201

RESUMEN

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Mutagénesis/genética , Mutación/genética , Oncogenes/genética , Factores de Edad , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/patología , Citosina/metabolismo , Análisis Mutacional de ADN , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Clasificación del Tumor , Reproducibilidad de los Resultados , Transducción de Señal/genética
7.
Cell ; 149(5): 994-1007, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608083

RESUMEN

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Evolución Clonal , Mutación , Algoritmos , Aberraciones Cromosómicas , Femenino , Humanos , Mutación Puntual
8.
Cell ; 149(5): 979-93, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608084

RESUMEN

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Asunto(s)
Neoplasias de la Mama/genética , Análisis Mutacional de ADN , Estudio de Asociación del Genoma Completo , Mutación , Desaminasas APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminasa/metabolismo , Femenino , Genes BRCA1 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
9.
J Pathol ; 227(4): 446-55, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22514011

RESUMEN

The application of paired-end next generation sequencing approaches has made it possible to systematically characterize rearrangements of the cancer genome to base-pair level. Utilizing this approach, we report the first detailed analysis of ovarian cancer rearrangements, comparing high-grade serous and clear cell cancers, and these histotypes with other solid cancers. Somatic rearrangements were systematically characterized in eight high-grade serous and five clear cell ovarian cancer genomes and we report here the identification of > 600 somatic rearrangements. Recurrent rearrangements of the transcriptional regulator gene, TSHZ3, were found in three of eight serous cases. Comparison to breast, pancreatic and prostate cancer genomes revealed that a subset of ovarian cancers share a marked tandem duplication phenotype with triple-negative breast cancers. The tandem duplication phenotype was not linked to BRCA1/2 mutation, suggesting that other common mechanisms or carcinogenic exposures are operative. High-grade serous cancers arising in women with germline BRCA1 or BRCA2 mutation showed a high frequency of small chromosomal deletions. These findings indicate that BRCA1/2 germline mutation may contribute to widespread structural change and that other undefined mechanism(s), which are potentially shared with triple-negative breast cancer, promote tandem chromosomal duplications that sculpt the ovarian cancer genome.


Asunto(s)
Neoplasias de la Mama/genética , Duplicación Cromosómica/genética , ADN de Neoplasias/genética , Genoma/genética , Neoplasias Ováricas/genética , Secuencias Repetidas en Tándem/genética , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patología , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/patología , Femenino , Reordenamiento Génico/genética , Humanos , Mutación/genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Quísticas, Mucinosas y Serosas/patología , Neoplasias Ováricas/patología
10.
Cell ; 148(4): 780-91, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341448

RESUMEN

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Asunto(s)
Neoplasias Faciales/veterinaria , Inestabilidad Genómica , Marsupiales/genética , Mutación , Animales , Evolución Clonal , Especies en Peligro de Extinción , Neoplasias Faciales/epidemiología , Neoplasias Faciales/genética , Neoplasias Faciales/patología , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Datos de Secuencia Molecular , Tasmania/epidemiología
11.
Cell ; 144(1): 27-40, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21215367

RESUMEN

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Asunto(s)
Aberraciones Cromosómicas , Neoplasias/genética , Neoplasias/patología , Neoplasias Óseas/genética , Línea Celular Tumoral , Pintura Cromosómica , Femenino , Reordenamiento Génico , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Persona de Mediana Edad
12.
PLoS One ; 6(12): e28616, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22220192

RESUMEN

The PAX6 gene plays a crucial role in development of the eye, brain, olfactory system and endocrine pancreas. Consistent with its pleiotropic role the gene exhibits a complex developmental expression pattern which is subject to strict spatial, temporal and quantitative regulation. Control of expression depends on a large array of cis-elements residing in an extended genomic domain around the coding region of the gene. The minimal essential region required for proper regulation of this complex locus has been defined through analysis of human aniridia-associated breakpoints and YAC transgenic rescue studies of the mouse smalleye mutant. We have carried out a systematic DNase I hypersensitive site (HS) analysis across 200 kb of this critical region of mouse chromosome 2E3 to identify putative regulatory elements. Mapping the identified HSs onto a percent identity plot (PIP) shows many HSs correspond to recognisable genomic features such as evolutionarily conserved sequences, CpG islands and retrotransposon derived repeats. We then focussed on a region previously shown to contain essential long range cis-regulatory information, the Pax6 downstream regulatory region (DRR), allowing comparison of mouse HS data with previous human HS data for this region. Reporter transgenic mice for two of the HS sites, HS5 and HS6, show that they function as tissue specific regulatory elements. In addition we have characterised enhancer activity of an ultra-conserved cis-regulatory region located near Pax6, termed E60. All three cis-elements exhibit multiple spatio-temporal activities in the embryo that overlap between themselves and other elements in the locus. Using a deletion set of YAC reporter transgenic mice we demonstrate functional interdependence of the elements. Finally, we use the HS6 enhancer as a marker for the migration of precerebellar neuro-epithelium cells to the hindbrain precerebellar nuclei along the posterior and anterior extramural streams allowing visualisation of migratory defects in both pathways in Pax6(Sey/Sey) mice.


Asunto(s)
Secuencia Conservada/genética , Desoxirribonucleasa I/metabolismo , Elementos de Facilitación Genéticos/genética , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Animales , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos/genética , Marcadores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Homeostasis/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Especificidad de la Especie
13.
Nature ; 467(7319): 1109-13, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20981101

RESUMEN

Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97-98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites, and how the tumour disseminates. Here we harness advances in DNA sequencing to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.


Asunto(s)
Inestabilidad Genómica/genética , Mutagénesis/genética , Metástasis de la Neoplasia/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Ciclo Celular/genética , Linaje de la Célula/genética , Células Clonales/metabolismo , Células Clonales/patología , Análisis Mutacional de ADN , Progresión de la Enfermedad , Evolución Molecular , Genes Relacionados con las Neoplasias/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Metástasis de la Neoplasia/patología , Especificidad de Órganos , Telómero/genética , Telómero/patología
14.
Genes Chromosomes Cancer ; 49(11): 1062-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20725990

RESUMEN

Detection of recurrent somatic rearrangements routinely allows monitoring of residual disease burden in leukemias, but is not used for most solid tumors. However, next-generation sequencing now allows rapid identification of patient-specific rearrangements in solid tumors. We mapped genomic rearrangements in three cancers and showed that PCR assays for rearrangements could detect a single copy of the tumor genome in plasma without false positives. Disease status, drug responsiveness, and incipient relapse could be serially assessed. In future, this strategy could be readily established in diagnostic laboratories, with major impact on monitoring of disease status and personalizing treatment of solid tumors.


Asunto(s)
Neoplasias de la Mama/genética , Reordenamiento Génico , Osteosarcoma/genética , Adulto , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Persona de Mediana Edad , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología
15.
Nature ; 463(7279): 360-3, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20054297

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Asunto(s)
Carcinoma de Células Renales/genética , Genes de la Neurofibromatosis 2 , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Neoplasias Renales/genética , Proteínas Nucleares/genética , Oxidorreductasas N-Desmetilantes/genética , Carcinoma de Células Renales/patología , Hipoxia de la Célula/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas , Humanos , Neoplasias Renales/patología , Mutación/genética , Análisis de Secuencia de ADN
16.
Nature ; 463(7278): 191-6, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20016485

RESUMEN

All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Mutación/genética , Neoplasias/genética , Adulto , Línea Celular Tumoral , Daño del ADN/genética , Análisis Mutacional de ADN , Reparación del ADN/genética , Dosificación de Gen/genética , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Melanoma/etiología , Melanoma/genética , MicroARNs/genética , Mutagénesis Insercional/genética , Neoplasias/etiología , Polimorfismo de Nucleótido Simple/genética , Medicina de Precisión , Eliminación de Secuencia/genética , Rayos Ultravioleta
17.
Nature ; 463(7278): 184-90, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20016488

RESUMEN

Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.


Asunto(s)
Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/genética , Mutación/genética , Nicotiana/efectos adversos , Carcinoma Pulmonar de Células Pequeñas/etiología , Carcinoma Pulmonar de Células Pequeñas/genética , Fumar/efectos adversos , Carcinógenos/toxicidad , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN/efectos de los fármacos , Variaciones en el Número de Copia de ADN/genética , Daño del ADN/genética , ADN Helicasas/genética , Análisis Mutacional de ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Exones/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma Humano/efectos de los fármacos , Genoma Humano/genética , Humanos , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Mutación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Eliminación de Secuencia/genética
18.
Nature ; 462(7276): 1005-10, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20033038

RESUMEN

Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.


Asunto(s)
Neoplasias de la Mama/genética , Aberraciones Cromosómicas , Reordenamiento Génico/genética , Genoma Humano/genética , Línea Celular Tumoral , Células Cultivadas , Roturas del ADN , Femenino , Biblioteca Genómica , Humanos , Análisis de Secuencia de ADN
19.
Nat Genet ; 41(5): 521-3, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19330029

RESUMEN

Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.


Asunto(s)
Mutación , Neoplasias/enzimología , Neoplasias/genética , Oxidorreductasas N-Desmetilantes/genética , Epigénesis Genética , Humanos , Histona Demetilasas con Dominio de Jumonji
20.
Eukaryot Cell ; 6(10): 1773-81, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17693593

RESUMEN

DNA double-strand breaks (DSBs) are repaired primarily by two distinct pathways: homologous recombination and nonhomologous end joining (NHEJ). NHEJ has been found in all eukaryotes examined to date and has been described recently for some bacterial species, illustrating its ancestry. Trypanosoma brucei is a divergent eukaryotic protist that evades host immunity by antigenic variation, a process in which homologous recombination plays a crucial function. While homologous recombination has been examined in some detail in T. brucei, little work has been done to examine what other DSB repair pathways the parasite utilizes. Here we show that T. brucei cell extracts support the end joining of linear DNA molecules. These reactions are independent of the Ku heterodimer, indicating that they are distinct from NHEJ, and are guided by sequence microhomology. We also demonstrate bioinformatically that T. brucei, in common with other kinetoplastids, does not encode recognizable homologues of DNA ligase IV or XRCC4, suggesting that NHEJ is either absent or mechanistically diverged in these pathogens.


Asunto(s)
Extractos Celulares , Recombinación Genética/genética , Homología de Secuencia de Ácido Nucleico , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética , Adenosina Trifosfato/farmacología , Animales , Antígenos Nucleares/metabolismo , Secuencia de Bases , Catálisis/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Secuencia Conservada , ADN Protozoario/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Autoantígeno Ku , Magnesio/farmacología , Datos de Secuencia Molecular , Filogenia , Plásmidos , Recombinasa Rad51/metabolismo , Recombinación Genética/efectos de los fármacos , Trypanosoma brucei brucei/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...