Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 23(2): 100838, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32058953

RESUMEN

Approximately 10% of human colorectal cancer (CRC) are associated with activated BRAFV600E mutation, typically in absence of APC mutation and often associated with a CpG island methylator (CIMP) phenotype. To protect from cancer, normal intestinal epithelial cells respond to oncogenic BRAFV600E by activation of intrinsic p53 and p16-dependent tumor suppressor mechanisms, such as cellular senescence. Conversely, CIMP is thought to contribute to bypass of these tumor suppressor mechanisms, e.g. via epigenetic silencing of tumor suppressor genes, such as p16. It has been repeatedly proposed that DNMT3B is responsible for BRAFV600E-induced CIMP in human CRC. Here we set out to test this by in silico, in vitro, and in vivo approaches. We conclude that although both BRAFV600E and DNMT3B harbor oncogenic potential in vitro and in vivo and show some evidence of cooperation in tumor promotion, they do not frequently cooperate to promote CIMP and human intestinal cancer.

2.
Br J Cancer ; 122(6): 868-884, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31942031

RESUMEN

BACKGROUND: Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood. METHODS: We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC. RESULTS: We propose that MYC induces a multigenic program that involves changes in intracellular calcium signalling and fatty acid metabolism. We determined key roles for fatty acid transporters (CD36), lipases (LPL), and kinases (PDGFRB, CAMKK2, and AMPK) that each contribute to promoting FAO in human mammary epithelial cells that express oncogenic levels of MYC. Bioinformatic analysis further showed that this multigenic program is highly expressed and predicts poor survival in the claudin-low molecular subtype of TNBC, but not other subtypes of TNBCs, suggesting that efforts to target FAO in the clinic may best serve claudin-low TNBC patients. CONCLUSION: We identified critical pieces of the FAO machinery that have the potential to be targeted for improved treatment of patients with TNBC, especially the claudin-low molecular subtype.


Asunto(s)
Claudinas/metabolismo , Ácidos Grasos/metabolismo , Metabolómica/métodos , Proteínas Proto-Oncogénicas c-myc/genética , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Transfección
3.
J Invest Dermatol ; 137(10): 2197-2207, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28647344

RESUMEN

On acquisition of an oncogenic mutation, primary human and mouse cells can enter oncogene-induced senescence (OIS). OIS is characterized by a stable proliferation arrest and secretion of proinflammatory cytokines and chemokines, the senescence-associated secretory phenotype. Proliferation arrest and the senescence-associated secretory phenotype collaborate to enact tumor suppression, the former by blocking cell proliferation and the latter by recruiting immune cells to clear damaged cells. However, the interactions of OIS cells with the immune system are still poorly defined. Here, we show that engagement of OIS in primary human melanocytes, specifically by melanoma driver mutations NRASQ61K and BRAFV600E, causes expression of the major histocompatibility class II antigen presentation apparatus, via secreted IL-1ß signaling and expression of CIITA, a master regulator of major histocompatibility class II gene transcription. In vitro, OIS melanocytes activate T-cell proliferation. In vivo, nonproliferating oncogene-expressing melanocytes localize to skin-draining lymph nodes, where they induce T-cell proliferation and an antigen presentation gene expression signature. In patients, expression of major histocompatibility class II in melanoma is linked to favorable disease outcome. We propose that OIS in melanocytes is accompanied by an antigen presentation phenotype, likely to promote tumor suppression via activation of the adaptive immune system.


Asunto(s)
Genes MHC Clase II/genética , Melanocitos/metabolismo , Melanoma/genética , Oncogenes/genética , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Humanos , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Transducción de Señal
4.
Genome Biol ; 18(1): 58, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28351383

RESUMEN

BACKGROUND: Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging "clock", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. RESULTS: In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. CONCLUSIONS: Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.


Asunto(s)
Envejecimiento/genética , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica , Longevidad/genética , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Análisis por Conglomerados , Islas de CpG , Metilación de ADN , Enanismo/genética , Elementos de Facilitación Genéticos , Epigenómica/métodos , Femenino , Hígado/metabolismo , Masculino , Ratones , Especificidad de Órganos/genética
5.
Genome Biol ; 17(1): 158, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27457071

RESUMEN

BACKGROUND: Histone modification H4K20me3 and its methyltransferase SUV420H2 have been implicated in suppression of tumorigenesis. The underlying mechanism is unclear, although H4K20me3 abundance increases during cellular senescence, a stable proliferation arrest and tumor suppressor process, triggered by diverse molecular cues, including activated oncogenes. Here, we investigate the function of H4K20me3 in senescence and tumor suppression. RESULTS: Using immunofluorescence and ChIP-seq we determine the distribution of H4K20me3 in proliferating and senescent human cells. Altered H4K20me3 in senescence is coupled to H4K16ac and DNA methylation changes in senescence. In senescent cells, H4K20me3 is especially enriched at DNA sequences contained within specialized domains of senescence-associated heterochromatin foci (SAHF), as well as specific families of non-genic and genic repeats. Altered H4K20me3 does not correlate strongly with changes in gene expression between proliferating and senescent cells; however, in senescent cells, but not proliferating cells, H4K20me3 enrichment at gene bodies correlates inversely with gene expression, reflecting de novo accumulation of H4K20me3 at repressed genes in senescent cells, including at genes also repressed in proliferating cells. Although elevated SUV420H2 upregulates H4K20me3, this does not accelerate senescence of primary human cells. However, elevated SUV420H2/H4K20me3 reinforces oncogene-induced senescence-associated proliferation arrest and slows tumorigenesis in vivo. CONCLUSIONS: These results corroborate a role for chromatin in underpinning the senescence phenotype but do not support a major role for H4K20me3 in initiation of senescence. Rather, we speculate that H4K20me3 plays a role in heterochromatinization and stabilization of the epigenome and genome of pre-malignant, oncogene-expressing senescent cells, thereby suppressing epigenetic and genetic instability and contributing to long-term senescence-mediated tumor suppression.


Asunto(s)
Carcinogénesis/genética , Senescencia Celular/genética , Cromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Heterocromatina/genética , Histonas/genética , Humanos , Nevo/metabolismo , Nevo/patología
6.
Genes Dev ; 28(24): 2712-25, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25512559

RESUMEN

Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/fisiología , Chaperonas de Histonas/metabolismo , Factores de Transcripción/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Proliferación Celular , Senescencia Celular/genética , Cromatina/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Marcadores Genéticos , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Ratones , Papiloma/patología , Neoplasias Cutáneas/patología , Tamoxifeno/farmacología , Factores de Transcripción/genética
7.
Genome Biol ; 15(8): 406, 2014 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25315154

RESUMEN

BACKGROUND: Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are neoplastic disorders of hematopoietic stem cells. DNA methyltransferase inhibitors, 5-azacytidine and 5-aza-2'-deoxycytidine (decitabine), benefit some MDS/AML patients. However, the role of DNA methyltransferase inhibitor-induced DNA hypomethylation in regulation of gene expression in AML is unclear. RESULTS: We compared the effects of 5-azacytidine on DNA methylation and gene expression using whole-genome single-nucleotide bisulfite-sequencing and RNA-sequencing in OCI-AML3 cells. For data analysis, we used an approach recently developed for discovery of differential patterns of DNA methylation associated with changes in gene expression, that is tailored to single-nucleotide bisulfite-sequencing data (Washington University Interpolated Methylation Signatures). Using this approach, we find that a subset of genes upregulated by 5-azacytidine are characterized by 5-azacytidine-induced signature methylation loss flanking the transcription start site. Many of these genes show increased methylation and decreased expression in OCI-AML3 cells compared to normal hematopoietic stem and progenitor cells. Moreover, these genes are preferentially upregulated by decitabine in human primary AML blasts, and control cell proliferation, death, and development. CONCLUSIONS: Our approach identifies a set of genes whose methylation and silencing in AML is reversed by DNA methyltransferase inhibitors. These genes are good candidates for direct regulation by DNA methyltransferase inhibitors, and their reactivation by DNA methyltransferase inhibitors may contribute to therapeutic activity.


Asunto(s)
Azacitidina/farmacología , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Silenciador del Gen/efectos de los fármacos , Leucemia Mieloide Aguda/genética , Regiones Promotoras Genéticas , Azacitidina/análogos & derivados , Línea Celular Tumoral , Decitabina , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/enzimología , Análisis de Secuencia de ARN
8.
Age (Dordr) ; 36(3): 9637, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24647599

RESUMEN

Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Oncogenes/genética , ARN Neoplásico/genética , Telómero/metabolismo , Proliferación Celular , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Neoplasias/metabolismo , Acortamiento del Telómero , Células Tumorales Cultivadas
9.
Age (Dordr) ; 36(3): 9618, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24488586

RESUMEN

The Wnt signaling pathway is involved in the regulation of tissue patterning and organ development during embryogenesis and continues to contribute to the maintenance of tissue homeostasis in adulthood. Recently, Wnt signaling has also been implicated in the establishment and progression of replicative cellular senescence. Given the known roles of tissue homeostasis and cellular senescence in aging, we sought to determine whether Wnt signaling changes with age. We examined the expression of 84 Wnt pathway-related genes in the liver, lung, skeletal muscle, and brain tissue from young and old mice. Expression changes were compared with those seen in cellular senescence, and transcription factors that might mediate these changes were predicted bioinformatically. In aggregate, our data are indicative of a general decrease in Wnt signaling with age, especially in the lung and brain. Furthermore, the set of genes that are differentially expressed with age is distinct from the genes differentially expressed in cellular senescence. The transcription factors predicted to regulate these changes, Nf-κB, Myb, Nkx2-1, Nr5a2, and Ep300, are known to regulate inflammation, differentiation, lipid metabolism, and chromatin remodeling, all of which have previously been implicated in aging. Although our study does not address whether altered Wnt signaling is a cause or an effect of aging, the presence of a relationship between the two provides a starting point for further investigation.


Asunto(s)
Envejecimiento/genética , Encéfalo/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Músculo Esquelético/metabolismo , ARN/genética , Proteínas Wnt/genética , Animales , Encéfalo/citología , Supervivencia Celular , Senescencia Celular/fisiología , Hígado/citología , Pulmón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Polimorfismo de Nucleótido Simple , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
10.
Nat Cell Biol ; 15(12): 1495-506, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24270890

RESUMEN

Altered DNA methylation and associated destabilization of genome integrity and function is a hallmark of cancer. Replicative senescence is a tumour suppressor process that imposes a limit on the proliferative potential of normal cells that all cancer cells must bypass. Here we show by whole-genome single-nucleotide bisulfite sequencing that replicative senescent human cells exhibit widespread DNA hypomethylation and focal hypermethylation. Hypomethylation occurs preferentially at gene-poor, late-replicating, lamin-associated domains and is linked to mislocalization of the maintenance DNA methyltransferase (DNMT1) in cells approaching senescence. Low-level gains of methylation are enriched in CpG islands, including at genes whose methylation and silencing is thought to promote cancer. Gains and losses of methylation in replicative senescence are thus qualitatively similar to those in cancer, and this 'reprogrammed' methylation landscape is largely retained when cells bypass senescence. Consequently, the DNA methylome of senescent cells might promote malignancy, if these cells escape the proliferative barrier.


Asunto(s)
Senescencia Celular/genética , Epigénesis Genética , Neoplasias/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Islas de CpG , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Expresión Génica , Genoma Humano , Humanos , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , Transporte de Proteínas
11.
Proc Natl Acad Sci U S A ; 110(40): 16009-14, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043806

RESUMEN

Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy.


Asunto(s)
Senescencia Celular/fisiología , Melanocitos/fisiología , Melanoma/etiología , Nevo/fisiopatología , Vía de Señalización Wnt/fisiología , Animales , Línea Celular Tumoral , Cartilla de ADN/genética , Células HEK293 , Humanos , Immunoblotting , Inmunohistoquímica , Melanocitos/citología , Ratones , Análisis por Micromatrices , Nevo/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
12.
Genes Dev ; 27(16): 1787-99, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23934658

RESUMEN

Senescence is a stable proliferation arrest, associated with an altered secretory pathway, thought to promote tumor suppression and tissue aging. While chromatin regulation and lamin B1 down-regulation have been implicated as senescence effectors, functional interactions between them are poorly understood. We compared genome-wide Lys4 trimethylation on histone H3 (H3K4me3) and H3K27me3 distributions between proliferating and senescent human cells and found dramatic differences in senescence, including large-scale domains of H3K4me3- and H3K27me3-enriched "mesas" and H3K27me3-depleted "canyons." Mesas form at lamin B1-associated domains (LADs) in replicative senescence and oncogene-induced senescence and overlap DNA hypomethylation regions in cancer, suggesting that pre-malignant senescent chromatin changes foreshadow epigenetic cancer changes. Hutchinson-Gilford progeria syndrome fibroblasts (mutant lamin A) also show evidence of H3K4me3 mesas, suggesting a link between premature chromatin changes and accelerated cell senescence. Canyons mostly form between LADs and are enriched in genes and enhancers. H3K27me3 loss is correlated with up-regulation of key senescence genes, indicating a link between global chromatin changes and local gene expression regulation. Lamin B1 reduction in proliferating cells triggers senescence and formation of mesas and canyons. Our data illustrate profound chromatin reorganization during senescence and suggest that lamin B1 down-regulation in senescence is a key trigger of global and local chromatin changes that impact gene expression, aging, and cancer.


Asunto(s)
Envejecimiento/genética , Envejecimiento/patología , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Línea Celular , Proliferación Celular , Células Cultivadas , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , Histonas/metabolismo , Humanos , Metilación , Progeria/patología , Estructura Terciaria de Proteína
13.
Cell Rep ; 3(4): 1012-9, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23602572

RESUMEN

The HIRA chaperone complex, comprised of HIRA, UBN1, and CABIN1, collaborates with histone-binding protein ASF1a to incorporate histone variant H3.3 into chromatin in a DNA replication-independent manner. To better understand HIRA's function and mechanism, we integrated HIRA, UBN1, ASF1a, and histone H3.3 chromatin immunoprecipitation sequencing and gene expression analyses. Most HIRA-binding sites colocalize with UBN1, ASF1a, and H3.3 at active promoters and active and weak/poised enhancers. At promoters, binding of HIRA/UBN1/ASF1a correlates with the level of gene expression. HIRA is required for deposition of histone H3.3 at its binding sites. There are marked differences in nucleosome and coregulator composition at different classes of HIRA-bound regulatory sites. Underscoring this, we report physical interactions between the HIRA complex and transcription factors, a chromatin insulator and an ATP-dependent chromatin-remodeling complex. Our results map the distribution of the HIRA chaperone across the chromatin landscape and point to different interacting partners at functionally distinct regulatory sites.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , Sitios Genéticos , Células HeLa , Chaperonas de Histonas/antagonistas & inhibidores , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
14.
Stem Cell Res Ther ; 4(2): 36, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23618383

RESUMEN

INTRODUCTION: Differentiation of vascular endothelial cells (ECs) in clinically relevant numbers for injection into ischaemic areas could offer therapeutic potential in the treatment of cardiovascular conditions, including myocardial infarction, peripheral vascular disease and stroke. While we and others have demonstrated successful generation of functional endothelial-like cells from human embryonic stem cells (hESCs), little is understood regarding the complex transcriptional and epigenetic changes that occur during differentiation, in particular during early commitment to a mesodermal lineage. METHODS: We performed the first gene expression microarray study of hESCs undergoing directed differentiation to ECs using a monolayer-based, feeder-free and serum-free protocol. Microarray results were confirmed by quantitative RT-PCR and immunocytochemistry, and chromatin immunoprecipitation (ChIP)-PCR analysis was utilised to determine the bivalent status of differentially expressed genes. RESULTS: We identified 22 transcription factors specific to early mesoderm commitment. Among these factors, FOXA2 was observed to be the most significantly differentially expressed at the hESC-EC day 2 timepoint. ChIP-PCR analysis revealed that the FOXA2 transcription start site is bivalently marked with histone modifications for both gene activation (H3K4me3) and repression (H3K27me3) in hESCs, suggesting the transcription factor may be a key regulator of hESC differentiation. CONCLUSION: This enhanced knowledge of the lineage commitment process will help improve the design of directed differentiation protocols, increasing the yield of endothelial-like cells for regenerative medicine therapies in cardiovascular disease.


Asunto(s)
Células Endoteliales/citología , Perfilación de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/metabolismo , Mesodermo/metabolismo , Diferenciación Celular , Línea Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Epigénesis Genética , Factor Nuclear 3-beta del Hepatocito/genética , Histonas/metabolismo , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
15.
Mech Ageing Dev ; 133(7): 498-507, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22721680

RESUMEN

Senescence is thought to play an important role in the progressive age-related decline in tissue integrity and concomitant diseases, but not much is known about the complex interplay between upstream regulators and downstream effectors. We profiled whole genome gene expression of non-stressed and rotenone-stressed human fibroblast strains from young and oldest old subjects, and measured senescence associated ß-gal activity. Microarray results identified gene sets involved in carbohydrate metabolism, Wnt/ß-catenin signaling, the cell cycle, glutamate signaling, RNA-processing and mitochondrial function as being differentially regulated with chronological age. The most significantly differentially regulated mRNA corresponded to the p16 gene. p16 was then investigated using qPCR, Western blotting and immunocytochemistry. In conclusion, we have identified cellular pathways that are differentially expressed between fibroblast strains from young and old subjects.


Asunto(s)
Envejecimiento/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Células Cultivadas , Femenino , Fibroblastos/patología , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
Mol Cell Biol ; 31(19): 4107-18, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21807893

RESUMEN

The mammalian HIRA/UBN1/ASF1a complex is a histone chaperone complex that is conserved from yeast (Saccharomyces cerevisiae) to humans. This complex preferentially deposits the histone variant H3.3 into chromatin in a DNA replication-independent manner and is implicated in diverse chromatin regulatory events from gene activation to heterochromatinization. In yeast, the orthologous complex consists of three Hir proteins (Hir1p, Hir2p, and Hir3p), Hpc2p, and Asf1p. Yeast Hir3p has weak homology to CABIN1, a fourth member of the human complex, suggesting that Hir3p and CABIN1 may be orthologs. Here we show that HIRA and CABIN1 interact at ectopic and endogenous levels of expression in cells, and we isolate the quaternary HIRA/UBN1/CABIN1/ASF1a (HUCA) complex, assembled from recombinant proteins. Mutational analyses support the view that HIRA acts as a scaffold to bring together UBN1, ASF1a, and CABIN1 into a quaternary complex. We show that, like HIRA, UBN1, and ASF1a, CABIN1 is involved in heterochromatinization of the genome of senescent human cells. Moreover, in proliferating cells, HIRA and CABIN1 regulate overlapping sets of genes, and these genes are enriched in the histone variant H3.3. In sum, these data demonstrate that CABIN1 is a functional member of the human HUCA complex and so is the likely ortholog of yeast Hir3p.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Senescencia Celular , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Unión Proteica , Factores de Transcripción/genética
17.
Mol Cell ; 42(1): 36-49, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21474066

RESUMEN

Mutations in both RAS and the PTEN/PIK3CA/AKT signaling module are found in the same human tumors. PIK3CA and AKT are downstream effectors of RAS, and the selective advantage conferred by mutation of two genes in the same pathway is unclear. Based on a comparative molecular analysis, we show that activated PIK3CA/AKT is a weaker inducer of senescence than is activated RAS. Moreover, concurrent activation of RAS and PIK3CA/AKT impairs RAS-induced senescence. In vivo, bypass of RAS-induced senescence by activated PIK3CA/AKT correlates with accelerated tumorigenesis. Thus, not all oncogenes are equally potent inducers of senescence, and, paradoxically, a weak inducer of senescence (PIK3CA/AKT) can be dominant over a strong inducer of senescence (RAS). For tumor growth, one selective advantage of concurrent mutation of RAS and PTEN/PIK3CA/AKT is suppression of RAS-induced senescence. Evidence is presented that this new understanding can be exploited in rational development and targeted application of prosenescence cancer therapies.


Asunto(s)
Genes ras , Neoplasias/enzimología , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Anciano , Animales , Línea Celular Transformada , Proliferación Celular , Senescencia Celular/genética , Senescencia Celular/fisiología , Fosfatidilinositol 3-Quinasa Clase I , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Neoplasias/patología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal
18.
Cell Div ; 5: 16, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20569479

RESUMEN

BACKGROUND: Cellular senescence is a permanent growth arrest that occurs in response to cellular stressors, such as telomere shortening or activation of oncogenes. Although the process of senescence growth arrest is somewhat conserved between mouse and human cells, there are some critical differences in the molecular pathways of senescence between these two species. Recent studies in human fibroblasts have defined a cell signaling pathway that is initiated by repression of a specific Wnt ligand, Wnt2. This, in turn, activates a histone chaperone HIRA, and culminates in formation of specialized punctate domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), that are enriched in the histone variant, macroH2A. SAHF are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. We asked whether this Wnt2-HIRA-SAHF pathway is conserved in mouse fibroblasts. RESULTS: We show that mouse embryo fibroblasts (MEFs) and mouse skin fibroblasts, do not form robust punctate SAHF in response to an activated Ras oncogene or shortened telomeres. However, senescent MEFs do exhibit elevated levels of macroH2A staining throughout the nucleus as a whole. Consistent with their failure to fully activate the SAHF assembly pathway, the Wnt2-HIRA signaling axis is not overtly regulated between proliferating and senescent mouse cells. CONCLUSIONS: In addition to the previously defined differences between mouse and human cells in the mechanisms and phenotypes associated with senescence, we conclude that senescent mouse and human fibroblasts also differ at the level of chromatin and the signaling pathways used to regulate chromatin. These differences between human and mouse senescence may contribute to the increased propensity of mouse fibroblasts (and perhaps other mouse cell types) to become immortalized and transformed, compared to human cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...