Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Sport Sci ; 20(5): 624-632, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31537166

RESUMEN

Before examining the effect of changing constraints on skill adaptation, it is useful to know the tolerable variability of a movement pattern for optimal performance. Tolerable variability may vary throughout the period of task performance as some parts of the movement pattern may be more important than others. The purpose of this study was to quantify the inter-trial variability of performance variables, and hand path as the task-relevant parameter, of skilled front crawl swimmers during 25 m sprints. It was hypothesised that the wrist paths would have smaller inter-trial variability during the below water phase than during the above water phase. Twelve skilled swimmers performed four 25 m front crawl sprints which were recorded by six phased locked video cameras for three-dimensional analysis. Standard deviations and time series repeatability (R 2) of the right and left wrist displacement were determined. On average, swimmers varied their sprint speed between trials by <1.5%. The spatio-temporal patterns of wrist paths varied by <3 cm in all directions (horizontal, vertical & lateral). There was no significant difference in inter-trial variability between above and below water phases. Swimmers increased wrist path consistency at the critical events of water entry in the horizontal and lateral directions and at exit for the horizontal direction. This study established levels of variability in spatio-temporal movement patterns of the paths of the wrist in sprint swimming and provided evidence that swimmers minimise variability for key events, in this case, the position of the wrists at water entry and exit.


Asunto(s)
Natación/fisiología , Extremidad Superior/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Análisis y Desempeño de Tareas , Adulto Joven
2.
J Strength Cond Res ; 34(1): 20-25, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31567840

RESUMEN

Andersen, JT, Sinclair, PJ, McCabe, CB, and Sanders, RH. Kinematic differences in shoulder roll and hip roll at different front crawl speeds in National Level Swimmers. J Strength Cond Res 34(1): 20-25, 2020-Dry-land strength training is a common component of swimming programs; however, its efficacy is contentious. A common criticism of dry-land strength training for swimming is a lack of specificity. An understanding of movement patterns in swimming can enable dry-land strength training programs to be developed to elicit adaptations that transfer to improvements in swimming performance. This study aimed to quantify the range and velocity of hip roll, shoulder roll, and torso twist (produced by differences in the relative angle between shoulder roll and hip roll) in front crawl at different swimming speeds. Longitudinal torso kinematics was compared between sprint and 400-m pace front crawl using 3D kinematics of 13 elite Scottish front crawl specialists. The range (sprint: 78.1°; 400 m: 61.3°) and velocity of torso twist (sprint: 166.3°·s; 400 m: 96.9°·s) were greater at sprint than 400-m pace. These differences were attributed to reductions in hip roll (sprint: 36.8°; 400 m: 49.9°) without corresponding reductions in shoulder roll (sprint: 97.7°; 400 m: 101.6°) when subjects swam faster. Shoulder roll velocity (sprint: 190.9°·s; 400 m: 139.2°·s) and hip roll velocity (sprint: 75.5°·s; 400 m: 69.1°·s) were greater at sprint than 400-m pace due to a higher stroke frequency at sprint pace (sprint: 0.95 strokes·s; 400 m: 0.70 strokes·s). These findings imply that torques acting to rotate the upper torso and the lower torso are greater at sprint than 400-m pace. Dry-land strength training specificity can be improved by designing exercises that challenge the torso muscles to reproduce the torques required to generate the longitudinal kinematics in front crawl.


Asunto(s)
Fenómenos Biomecánicos , Cadera/fisiología , Hombro/fisiología , Natación/fisiología , Adaptación Fisiológica , Adolescente , Atletas , Estudios Transversales , Humanos , Masculino , Músculo Esquelético , Entrenamiento de Fuerza , Torque , Torso , Adulto Joven
3.
J Sports Sci Med ; 15(1): 158-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26957939

RESUMEN

The purpose of this study was to explore the reliability of estimating three-dimensional (3D) angular kinematics and kinetics of a swimmer derived from digitized video. Two high-level front crawl swimmers and one high level backstroke swimmer were recorded by four underwater and two above water video cameras. One of the front crawl swimmers was digitized at 50 fields per second with a window for smoothing by a 4(th) order Butterworth digital filter extending 10 fields beyond the start and finish of the stroke cycle (FC1), while the other front crawl (FC2) and backstroke (BS) swimmer were digitized at 25 frames per second with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of one stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) yaw, pitch, roll, and torques were derived together with wrist and ankle moment arms with respect to an inertial reference system with origin at the CM. Coefficients of repeatability ranging from r = 0.93 to r = 0.99 indicated that both digitising sampling rates and extrapolation methods are sufficiently reliable to identify real differences in net torque production. This will enable the sources of rotations about the three axes to be explained in future research. Errors in angular kinematics and displacements of the wrist and ankles relative to range of motion were small for all but the ankles in the X (swimming) direction for FC2 who had a very vigorous kick. To avoid large errors when digitising the ankles of swimmers with vigorous kicks it is recommended that a marker on the shank could be used to calculate the ankle position based on the known displacements between knee, shank, and ankle markers. Key pointsUsing the methods described, an inverse dynamics approach based on 3D position data digitized manually from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding torque production in swimming additional to those of other approaches.The ability to link the torque profiles to swimming actions and technique is enhanced by having additional data such as wrist and ankle displacements that can be obtained readily from the digitized data.An additional marker on the shank should be used to improve accuracy and reliability of calculating the ankle motion for swimmers with a vigorous kick.

4.
J Biomech ; 48(15): 3995-4001, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26456423

RESUMEN

The purpose of this study was to determine whether the breathing action in front crawl (FC) sprint swimming affects the ipsilateral upper limb kinematics relative to a non-breathing stroke cycle (SC). Ten male competitive swimmers performed two 25m FC sprints: one breathing to their preferred side (Br) and one not breathing (NBr). Both swim trials were performed through a 6.75m(3) calibrated space and recorded by six gen-locked JVC KY32 CCD cameras. A paired t-test was used to assess statistical differences between the trials, with a confidence level of p<0.05 accepted as significant. Swimmers were slower (3%) when breathing. Within the entry phase, swimmers had a slower COM horizontal velocity (3.3%), less shoulder flexion (8%), abduction (33%) and roll (4%) when breathing. The pull phase was longer in duration (14%) swimmers had a shallower hand path (11%), less shoulder abduction (11%), a slower hand vertical acceleration (30%) and slower centre of mass (COM) horizontal velocity (3%) when breathing. In the push phase, swimmers had a smaller elbow range of motion (ROM) (38%), faster backwards hand speed (25%) and faster hand vertical acceleration (33%) when breathing. Swimmers rolled their shoulders more (12%) in the recovery phase when breathing. This study confirms that swim performance is compromised by the inclusion of taking a breath in sprint FC swimming. It was proposed that swimmers aim to orient their ipsilateral shoulder into a stronger position by stretching and rolling the shoulders more in the entry phase whilst preparing to take a breath. Swimmers should focus on lengthening the push phase by extending the elbow more and not accelerating the hand too quickly upwards when preparing to inhale.


Asunto(s)
Codo/fisiología , Mano/fisiología , Respiración , Hombro/fisiología , Natación/fisiología , Aceleración , Adolescente , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Rango del Movimiento Articular , Adulto Joven
5.
J Sports Sci Med ; 14(2): 304-14, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25983579

RESUMEN

Despite the importance of maintaining good alignment to minimize resistive drag in swimming there is a paucity of literature relating to the effect of technique asymmetries on rotations of the body about a vertical axis (yaw). The purpose of this paper was to present an approach to analyzing the effect of technique asymmetries on rotations in swimming, exemplifying the process with a case study of a breaststroke swimmer. The kinematics and angular kinetics of an elite female international breaststroke swimmer performing a 'fatigue set' of four 100m swims were derived from digitized three-dimensional video data using a 13 segment body model. Personalised anthropometric data required to quantify accurately segment and whole body centres of mass and segmental angular momentum were obtained by the elliptical zone method. Five episodes of torques producing yaw occurred in the stroke cycle sampled for each 100m swim of this swimmer. These torques were linked to bilateral differences in upper limb kinematics during 1) out-sweep; 2) in-sweep; 3) upper limb recovery; and lower limb kinematics during 4) Lower limb recovery and 5) the kick. It has been shown that by quantifying whole body torques, in conjunction with the kinematic movement patterns, the effect of technique asymmetries on body alignment can be assessed. Assessment of individual swimmers in this manner provides a solid foundation for planning interventions in strength, flexibility, and technique to improve alignment and performance. Key pointsA unique (not been attempted previously) study of yaw in breaststroke swimming that yields new knowledge of how technique and strength asymmetries affects body alignment.Establishes an approach to investigation of yaw in swimming using 3D videography and inverse dynamics.Exemplifies the approach with a case study. The case study illustrated the potential of the approach to enable detailed assessment of yaw and to explain how the yaw is produced in terms of the asymmetries in speed and magnitude of the swimming actions.This procedure should be used to identify and quantify asymmetries that might impair performance.

6.
J Sports Sci Med ; 14(2): 441-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25983595

RESUMEN

The purpose of this study was to explore the reliability of estimating three-dimensional (3D) linear kinematics and kinetics of a swimmer derived from digitized video and to assess the effect of framing rate and smoothing window size. A stroke cycle of two high-level front crawl swimmers and one high level backstroke swimmer was recorded by four underwater and two above water video cameras. One of the front crawl swimmers was recorded and digitized at 50 Hz with a window for smoothing by 4(th) order Butterworth digital filter extending 10 frames beyond the start and finish of the stroke cycle, while the other front crawl and backstroke swimmer were recorded and digitized at 25 Hz with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of the stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) component velocities and accelerations were derived together with wrist and ankle linear velocities. Coefficients of reliability ranging from r = 0.942 to r = 0.999 indicated that both methods are sufficiently reliable to identify real differences in net force production during the pulls of the right and left hands. Reliability of digitizing was better for front crawl when digitizing at 50Hz with 10 frames extension than at 25 Hz with 5 frames extension (p < 0.01) and better for backstroke than front crawl (p < 0.01). However, despite the extension and reflection of data, errors were larger in the first 15% of the stroke cycle than the period between 15 and 85% of the stroke cycle for CM velocity and acceleration and for foot speed (p < 0.01). Key pointsAn inverse dynamics based on 3D position data digitized from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding force production in swimming additional to those of other approaches.The ability to link the force profiles to swimming actions and technique is enhanced by having additional data such as wrist and foot velocities that can be obtained readily from the digitized data.Sampling at 25 Hz with at least 5 samples before and after the period of interest is required for reliable data when using a 4th Order Butterworth Digital Filter.

7.
J Sports Sci Med ; 14(1): 215-24, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25729310

RESUMEN

Due to the difficulty of measuring forces and torques acting on a swimmer during mid-pool swimming, an inverse dynamics approach is required. Personalised body segment parameter (BSP) data enabling calculation of net forces and torques can be obtained using the elliptical zone method. The purpose of this study was to establish the reliability of estimating BSP data of swimmers by the elliptical zone method with segment outlines being traced manually on a personal computer screen. Five assessors digitised the segment landmarks and traced the body segments from front and side view digital photographs of 11 single arm amputee swimmers. Each swimmer was assessed five times by each of the five assessors. The order was fully randomised. Within assessor variability was less than 5% for the segment centre of mass position of all segments, for segment length except the neck (5.2%), and for segment mass except neck (11.9%), hands (Left: 8.1%; Right: 5.8%) and feet (Left: 7.3%; Right: 7.3%). Analysis of mean variability within and between assessors indicated that between assessor variability was generally as large or larger than within assessor variability. Consequently it is recommended that when seeking personalised BSP data to maximise the accuracy of derived kinetics and sensitivity for longitudinal and bilateral within-subject comparisons the individual should be assessed by the same assessor with mean values obtained from five repeat digitisations. This study established that using the elliptical zone method using E-Zone software is a reliable and convenient way of obtaining personalised BSP data for use in analysis of swimming. Key pointsA unique (not been attempted previously) study of reliability of calculating personalised Body Segment Parameter (BSP) data using the elliptical zone methodEstablishes benchmark data regarding the reliability of BSP data for comparison with emerging technologies for obtaining personalised BSP data non-invasively.Provides a description and guidelines for good practice for maximising the accuracy of derived kinematics and kinetics in swimming.The method of body modelling described can also be applied to studies in other sports and in assessing change in health status related to body shape characteristics for sport and non-sport populations.

8.
J Sports Sci ; 30(6): 601-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22315962

RESUMEN

The purpose of the study was to determine whether there are differences in kinematics between sprint and distance front crawl specialists when swimming at a distance pace using a six beat kick. Seven sprint and eight distance male specialists performed one maximum 400 m swim through a 6.75 m³ calibrated space recorded by six gen-locked cameras. The following variables were calculated: average swim velocity, stroke length, stroke frequency, upper limb and foot displacement, elbow angle, the shoulder and hip roll angle, duration of the stroke phases and time corresponding to particular events within the stroke cycle relative to hand entry. Differences between the groups were assessed by an independent t-test and effect size (d) calculations for each variable. The groups only differed significantly with respect to the average swim velocity, with the distance swimmers maintaining a greater velocity throughout the 400 m. However, effect sizes were moderate for elbow angle range during the pull phase (d = 0.78) and the total hip roll magnitude (d = 0.76). There was little evidence to suggest that sprint and distance swimmers using a six beat kick pattern differ in technique when swimming at a distance pace and therefore coaches should not encourage the development of different techniques between these groups.


Asunto(s)
Codo , Cadera , Movimiento , Rango del Movimiento Articular , Natación , Análisis y Desempeño de Tareas , Adolescente , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Grabación en Video , Adulto Joven
9.
J Sports Sci ; 29(2): 115-23, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21120744

RESUMEN

The purpose of this study was to use three-dimensional methods to determine whether there are distinct kinematic differences between sprint and distance front crawl swimmers when swimming at a sprint pace. Seven sprint and eight distance specialists performed four 25-m sprints through a 6.75-m(3) calibrated space recorded by six gen-locked cameras. The variables of interest were: average swim velocity, stroke length, stroke frequency, upper limb and foot displacement, elbow angle, shoulder and hip roll angles, duration of stroke phases, and the time corresponding to particular events within the stroke cycle relative to hand entry. Differences between sprint and distance swimmers were assessed with an independent t-test for each variable, in addition to effect size calculations. Differences between sprint and distance front crawl swimmers were generally small and not significant when swimming at a sprint pace. Differences were limited to temporal aspects of the stroke cycle. These findings suggest that coaches should not train sprint and distance specialists differently in terms of technique development.


Asunto(s)
Extremidades/fisiología , Cadera/fisiología , Natación/fisiología , Adolescente , Adulto , Atletas , Fenómenos Biomecánicos , Humanos , Masculino , Educación y Entrenamiento Físico , Factores de Tiempo , Grabación en Video , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA