Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(9): e9269, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177137

RESUMEN

Animal behaviors are often modified in urban settings due to changes in species assemblages and interactions. The ability of prey to respond to a predator is a critical behavior, but urban populations may experience altered predation pressure, food supplementation, and other human-mediated disturbances that modify their responsiveness to predation risk and promote habituation.Citizen-science programs generally focus on the collection and analysis of observational data (e.g., bird checklists), but there has been increasing interest in the engagement of citizen scientists for ecological experimentation.Our goal was to implement a behavioral experiment in which citizen scientists recorded antipredator behaviors in wild birds occupying urban areas. In North America, increasing populations of Accipiter hawks have colonized suburban and urban areas and regularly prey upon birds that frequent backyard bird feeders. This scenario, of an increasingly common avian predator hunting birds near human dwellings, offers a unique opportunity to characterize antipredator behaviors within urban passerines.For two winters, we engaged citizen scientists in Chicago, IL, USA to deploy a playback experiment and record antipredator behaviors in backyard birds. If backyard birds maintained their antipredator behaviors, we hypothesized that birds would decrease foraging behaviors and increase vigilance in response to a predator cue (hawk playback) but that these responses would be mediated by flock size, presence of sentinel species, body size, tree cover, and amount of surrounding urban area.Using a randomized control-treatment design, citizen scientists at 15 sites recorded behaviors from 3891 individual birds representing 22 species. Birds were more vigilant and foraged less during the playback of a hawk call, and these responses were strongest for individuals within larger flocks and weakest in larger-bodied birds. We did not find effects of sentinel species, tree cover, or urbanization.By deploying a behavioral experiment, we found that backyard birds inhabiting urban landscapes largely maintained antipredator behaviors of increased vigilance and decreased foraging in response to predator cues. Experimentation in citizen science poses challenges (e.g., observation bias, sample size limitations, and reduced complexity in protocol design), but unlike programs focused solely on observational data, experimentation allows researchers to disentangle the complex factors underlying animal behavior and species interactions.

2.
Ecol Evol ; 11(16): 11267-11274, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429916

RESUMEN

There is increasing pressure on wind energy facilities to manage or mitigate for wildlife collisions. However, little information exists regarding spatial and temporal variation in collision rates, meaning that mitigation is most often a blanket prescription. To address this knowledge gap, we evaluated variation among turbines and months in an aspect of collision risk-probability of entry by an eagle into a rotor-swept zone (hereafter, "probability of entry"). We examined 10,222 eagle flight paths identified and recorded by an automated bird monitoring system at a wind energy facility in Wyoming, USA. Probabilities of entry per turbine-month combination were 4.03 times greater in some months than others, ranging 0.15 to 0.62. The overall probability of entry for the riskiest turbine (i.e., the one with the greatest probability of entry) was 2.39 times greater than the least-risky turbine. Our methodology describes large variation across turbines and months in the probability of entry. If subsequently combined with information on other sources of variation (i.e., weather, topography), this approach can identify risky versus safe situations for eagles under which cost of management, curtailment prescriptions, and collision risk can be simultaneously minimized.

3.
Proc Biol Sci ; 285(1890)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404886

RESUMEN

Urbanization causes the simplification of natural habitats, resulting in animal communities dominated by exotic species with few top predators. In recent years, however, many predators such as hawks, and in the US coyotes and cougars, have become increasingly common in urban environments. Hawks in the Accipiter genus, especially, are recovering from widespread population declines and are increasingly common in urbanizing landscapes. Our goal was to identify factors that determine the occupancy, colonization and persistence of Accipiter hawks in a major metropolitan area. Through a novel combination of citizen science and advanced remote sensing, we quantified how urban features facilitate the dynamics and long-term establishment of Accipiter hawks. Based on data from Project FeederWatch, we quantified 21 years (1996-2016) of changes in the spatio-temporal dynamics of Accipiter hawks in Chicago, IL, USA. Using a multi-season occupancy model, we estimated Cooper's (Accipiter cooperii) and sharp-shinned (A. striatus) hawk occupancy dynamics as a function of tree canopy cover, impervious surface cover and prey availability. In the late 1990s, hawks occupied 26% of sites around Chicago, but after two decades, their occupancy fluctuated close to 67% of sites and they colonized increasingly urbanized areas. Once established, hawks persisted in areas with high levels of impervious surfaces as long as those areas supported high abundances of prey birds. Urban areas represent increasingly habitable environments for recovering predators, and understanding the precise urban features that drive colonization and persistence is important for wildlife conservation in an urbanizing world.


Asunto(s)
Ecosistema , Cadena Alimentaria , Halcones/fisiología , Animales , Aves/fisiología , Chicago , Modelos Biológicos , Dinámica Poblacional , Tecnología de Sensores Remotos , Estaciones del Año , Urbanización
4.
Evolution ; 70(9): 2145-54, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27435797

RESUMEN

Suture zones are areas where range contact zones and hybrid zones of multiple taxa are clustered. Migratory divides, contact zones between divergent populations that breed adjacent to one another but use different migratory routes, are a particular case of suture zones. Although multiple hypotheses for both the formation and maintenance of migratory divides have been suggested, quantitative tests are scarce. Here, we tested whether a novel factor, prevailing winds, was sufficient to explain both the evolution and maintenance of the Cordilleran migratory divide using individual-based models. Empirical observations of eastern birds suggest a circuitous migratory route across Canada before heading south. Western breeders, however, travel south along the Pacific coast to their wintering grounds. We modeled the effect of wind on bird migratory flights by allowing them to float at elevation using spatially explicit modeled wind data. Modeled eastern birds had easterly mean trajectories, whereas western breeders showed significantly more southern trajectories. We also determined that a mean airspeed of 18.5 m s(-1) would be necessary to eliminate this difference in trajectory, a speed that is achieved by waterfowl and shorebirds, but is faster than songbird flight speeds. These results lend support for the potential importance of wind in shaping the phylogeographic history of North American songbirds.


Asunto(s)
Migración Animal , Evolución Biológica , Pájaros Cantores/fisiología , Viento , Animales , Canadá , Vuelo Animal , Modelos Biológicos , Filogeografía , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...