Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 105078, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37482277

RESUMEN

Manganese (Mn) is an essential nutrient, but is toxic in excess. Whole-body Mn levels are regulated in part by the metal-ion influx transporter SLC39A8, which plays an essential role in the liver by reclaiming Mn from bile. Physiological roles of SLC39A8 in Mn homeostasis in other tissues, however, remain largely unknown. To screen for extrahepatic requirements for SLC39A8 in tissue Mn homeostasis, we crossed Slc39a8-inducible global-KO (Slc39a8 iKO) mice with Slc39a14 KO mice, which display markedly elevated blood and tissue Mn levels. Tissues were then analyzed by inductively coupled plasma-mass spectrometry to determine levels of Mn. Although Slc39a14 KO; Slc39a8 iKO mice exhibited systemic hypermanganesemia and increased Mn loading in the bone and kidney due to Slc39a14 deficiency, we show Mn loading was markedly decreased in the brains of these animals, suggesting a role for SLC39A8 in brain Mn accumulation. Levels of other divalent metals in the brain were unaffected, indicating a specific effect of SLC39A8 on Mn. In vivo radiotracer studies using 54Mn in Slc39a8 iKO mice revealed that SLC39A8 is required for Mn uptake by the brain, but not most other tissues. Furthermore, decreased 54Mn uptake in the brains of Slc39a8 iKO mice was associated with efficient inactivation of Slc39a8 in isolated brain microvessels but not in isolated choroid plexus, suggesting SLC39A8 mediates brain Mn uptake via the blood-brain barrier. These findings establish SLC39A8 as a candidate therapeutic target for mitigating Mn uptake and accumulation in the brain, the primary organ of Mn toxicity.


Asunto(s)
Encéfalo , Proteínas de Transporte de Catión , Manganeso , Animales , Ratones , Transporte Biológico , Encéfalo/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Ratones Noqueados
2.
Nutrients ; 13(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072120

RESUMEN

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a "privileged" organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood-brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood-CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Manganeso , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Líquido Cefalorraquídeo/metabolismo , Líquido Cefalorraquídeo/fisiología , Plexo Coroideo/metabolismo , Plexo Coroideo/fisiología , Homeostasis/fisiología , Humanos , Manganeso/metabolismo , Manganeso/fisiología , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...