Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 8(12): e84149, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376789

RESUMEN

The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency.


Asunto(s)
Alelos , Conducta Animal , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Proteínas del Tejido Nervioso/genética , Fenotipo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Femenino , Larva/genética , Masculino , Pupa/genética
2.
Cell Tissue Res ; 349(1): 27-37, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22526621

RESUMEN

Axonal regeneration is inhibited by a plethora of different mechanisms in the adult central nervous system (CNS). While neurotrophic factors have been shown to stimulate axonal growth in numerous animal models of nervous system injury, a lack of suitable growth substrates, an insufficient activation of neuron-intrinsic regenerative programs, and extracellular inhibitors of regeneration limit the efficacy of neurotrophic factor delivery for anatomical and functional recovery after spinal cord injury. Thus, growth-stimulating factors will likely have to be combined with other treatment approaches to tap into the full potential of growth factor therapy for axonal regeneration. In addition, the temporal and spatial distribution of growth factors have to be tightly controlled to achieve biologically active concentrations, to allow for the chemotropic guidance of axons, and to prevent adverse effects related to the widespread distribution of neurotrophic factors. Here, we will review the rationale for combinatorial treatments in axonal regeneration and summarize some recent progress in promoting axonal regeneration in the injured CNS using such approaches.


Asunto(s)
Factores de Crecimiento Nervioso/metabolismo , Medicina Regenerativa/métodos , Regeneración de la Medula Espinal/fisiología , Animales , Axones/metabolismo , Humanos , Médula Espinal/patología
3.
Front Mol Neurosci ; 5: 11, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22347167

RESUMEN

The development of eukaryotic transfection technologies has been rapid in recent years, providing the opportunity to better analyze cell-autonomous mechanisms influencing various cellular processes, including cell-intrinsic regulators of regenerative neurite growth and survival. Electroporation is one of the more effective methodologies for transfection of post-mitotic neurons demonstrating sufficient neuronal survival and transfection efficiency. To further maximize the number of transfected neurons especially with large plasmids, to limit the cellular exposure to serum, and to minimize the number of animals required for cell isolation per experiment, we compared two state-of-the-art electroporation devices for in vitro transfection of adult rat dorsal root ganglion (DRG) neuron cultures. By refining different parameters, transfection efficiencies of 39-42% could be achieved using the Lonza 4D-Nucleofector X-unit system, 1.5-2-fold higher rates than those that have been previously published for adult DRG neurons using smaller plasmid sizes. Our protocol further limits the number of cells required to 3 × 10(5) cells per 20 µl reaction using only 2 µg DNA/reaction and allows for the complete omission of serum post-transfection. Application of this optimized protocol will contribute to furthering the study of neuron-intrinsic mechanisms responsible for growth and survival under physiological and pathophysiological conditions.

4.
J Neurochem ; 115(4): 930-40, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20807308

RESUMEN

Photoreceptor degeneration is the hallmark of a group of inherited blinding diseases collectively termed retinitis pigmentosa (RP); a major cause of blindness in humans. RP is at present untreatable and the underlying neurodegenerative mechanisms are largely unknown, even though the genetic causes are often established. The activation of calpain-type proteases may play an important role in cell death in various neuronal tissues, including the retina. We therefore tested the efficacy of two different calpain inhibitors in preventing cell death in the retinal degeneration (rd1) human homologous mouse model for RP. Pharmacological inhibition of calpain activity in rd1 organotypic retinal explants had ambiguous effects on photoreceptor viability. Calpain inhibitor XI had protective effects when applied for short periods of time (16 h) but demonstrated substantial levels of toxicity in both wild-type and rd1 retina when used over several days. In contrast, the highly specific calpain inhibitor calpastatin peptide reduced photoreceptor cell death in vitro after both short and prolonged exposure, an effect that was also evident after in vivo application via intravitreal injection. These findings highlight the importance of calpain activation for photoreceptor cell death but also for photoreceptor survival and propose the use of highly specific calpain inhibitors to prevent or delay RP.


Asunto(s)
Calpaína/antagonistas & inhibidores , Glicoproteínas/toxicidad , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/enzimología , Retinitis Pigmentosa/inducido químicamente , Retinitis Pigmentosa/prevención & control , Animales , Proteínas de Unión al Calcio/uso terapéutico , Calpaína/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Glicoproteínas/uso terapéutico , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/enzimología , Degeneración Retiniana/patología , Degeneración Retiniana/prevención & control , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/patología
5.
Biol Bull ; 214(2): 99-110, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18400992

RESUMEN

Crayfish rely on the chemosensory neurons in their antennules to help them find food and habitat and to mediate social interactions. These structures often sustain damage from aggressive interactions or from the environment, but they have the ability to regenerate. In this study, we examine whether the effects of antennule ablation and regeneration on odor-tracking ability correlate with structural changes in the antennule that occur during regeneration. We initiated the regeneration process by removing the right antennules from 55 individuals of Orconectes sanborni. We developed a method to nondestructively sample the regenerating antennules so that we could follow the growth of new antennular tissue in the same animals over time. We used dental epoxy to make molds of the regenerating antennule after each molt. We then made resin positives, which were visualized using scanning electron microscopy. Structural parameters including aesthetasc length, diameter, segment length, and number per row were measured from scanning electron micrographs using Image J software. Crayfish were tested in a tabletop water Y-maze before and after surgery and after each molt to assess their ability to track food odors. The structural and the behavioral data indicate that the antennules possessed many aspects of their original structure by the end of the second molt. Flicking of antennules, investigation of substrate, success rate at finding the odor-containing Y-maze branch, and time to completion of Y-maze regained pre-antennulectomy values by the end of the third molt.


Asunto(s)
Astacoidea/fisiología , Células Quimiorreceptoras/fisiología , Regeneración/fisiología , Olfato/fisiología , Animales , Muda/fisiología
6.
J Cell Biol ; 177(6): 1119-32, 2007 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-17576803

RESUMEN

Clearance of fibrin through proteolytic degradation is a critical step of matrix remodeling that contributes to tissue repair in a variety of pathological conditions, such as stroke, atherosclerosis, and pulmonary disease. However, the molecular mechanisms that regulate fibrin deposition are not known. Here, we report that the p75 neurotrophin receptor (p75(NTR)), a TNF receptor superfamily member up-regulated after tissue injury, blocks fibrinolysis by down-regulating the serine protease, tissue plasminogen activator (tPA), and up-regulating plasminogen activator inhibitor-1 (PAI-1). We have discovered a new mechanism in which phosphodiesterase PDE4A4/5 interacts with p75(NTR) to enhance cAMP degradation. The p75(NTR)-dependent down-regulation of cAMP results in a decrease in extracellular proteolytic activity. This mechanism is supported in vivo in p75(NTR)-deficient mice, which show increased proteolysis after sciatic nerve injury and lung fibrosis. Our results reveal a novel pathogenic mechanism by which p75(NTR) regulates degradation of cAMP and perpetuates scar formation after injury.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fibrosis , Receptor de Factor de Crecimiento Nervioso/fisiología , Activador de Tejido Plasminógeno/antagonistas & inhibidores , Animales , Cicatriz/etiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Fibrinólisis , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Inhibidor 1 de Activador Plasminogénico/genética , Nervio Ciático/lesiones , Heridas y Lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA