Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 14: 73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154909

RESUMEN

AIM: We report the construction of a Virus-Induced Gene Silencing (VIGS) vector and an agroinoculation protocol for gene silencing in cassava (Manihot esculenta Crantz) leaves and roots. The African cassava mosaic virus isolate from Nigeria (ACMV-[NOg]), which was initially cloned in a binary vector for agroinoculation assays, was modified for application as VIGS vector. The functionality of the VIGS vector was validated in Nicotiana benthamiana and subsequently applied in wild-type and transgenic cassava plants expressing the uidA gene under the control of the CaMV 35S promoter in order to facilitate the visualization of gene silencing in root tissues. VIGS vectors were targeted to the Mg2+-chelatase gene in wild type plants and both the coding and promoter sequences of the 35S::uidA transgene in transgenic plants to induce silencing. We established an efficient agro-inoculation method with the hyper-virulent Agrobacterium tumefaciens strain AGL1, which allows high virus infection rates. The method can be used as a low-cost and rapid high-throughput evaluation of gene function in cassava leaves, fibrous roots and storage roots. BACKGROUND: VIGS is a powerful tool to trigger transient sequence-specific gene silencing in planta. Gene silencing in different organs of cassava plants, including leaves, fibrous and storage roots, is useful for the analysis of gene function. RESULTS: We developed an African cassava mosaic virus-based VIGS vector as well as a rapid and efficient agro-inoculation protocol to inoculate cassava plants. The VIGS vector was validated by targeting endogenous genes from Nicotiana benthamiana and cassava as well as the uidA marker gene in transgenic cassava for visualization of gene silencing in cassava leaves and roots. CONCLUSIONS: The African cassava mosaic virus-based VIGS vector allows efficient and cost-effective inoculation of cassava for high-throughput analysis of gene function in cassava leaves and roots.

2.
Methods Protoc ; 1(4)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31164582

RESUMEN

Genetic engineering is considered to be an important tool for the improvement of cassava. Cassava is a highly heterozygous crop species for which conventional breeding is a lengthy and tedious process. Robust transformation is based on Agrobacterium-mediated transformation of friable embryogenic callus (FEC). Production of FEC is genotype-dependent and considered to be a major bottleneck for the genetic transformation of cassava. As a consequence, routine genetic transformation has only been established for a handful of cassava cultivars. Therefore, development of procedures enabling efficient production of high-quality cassava FEC is required to allow the translation of research from the model cultivar to farmer-preferred cassava cultivars. Here we study the FEC production capacity of Brazilian cassava cultivars and report the modification of the protocol for the genetic transformation of Verdinha (BRS 222), a recalcitrant cultivar with high potential for protein production that is extensively used by farmers in Brazil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA