Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EuroIntervention ; 20(10): e669-e680, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776143

RESUMEN

BACKGROUND: Compared with thin-strut durable-polymer drug-eluting stents (DP-DES), ultrathin-strut biodegradable-polymer sirolimus-eluting stents (BP-SES) improve stent-related clinical outcomes in patients undergoing percutaneous coronary intervention (PCI). Reduced stent strut thickness is hypothesised to underlie these benefits, but this conjecture remains unproven. AIMS: We aimed to assess the impact of strut thickness on stent healing and clinical outcomes between ultrathin-strut and thin-strut BP-SES. METHODS: First, we performed a preclinical study of 8 rabbits implanted with non-overlapping thin-strut (diameter/thickness 3.5 mm/80 µm) and ultrathin-strut (diameter/thickness 3.0 mm/60 µm) BP-SES in the infrarenal aorta. On day 7, the rabbits underwent intravascular near-infrared fluorescence optical coherence tomography (NIRF-OCT) molecular-structural imaging of fibrin deposition and stent tissue coverage, followed by histopathological analysis. Second, we conducted an individual data pooled analysis of patients enrolled in the BIOSCIENCE and BIOSTEMI randomised PCI trials treated with ultrathin-strut (n=282) or thin-strut (n=222) BP-SES. The primary endpoint was target lesion failure (TLF) at 1-year follow-up, with a landmark analysis at 30 days. RESULTS: NIRF-OCT image analyses revealed that ultrathin-strut and thin-strut BP-SES exhibited similar stent fibrin deposition (p=0.49) and percentage of uncovered stent struts (p=0.63). Histopathological assessments corroÂborated these findings. In 504 pooled randomised trial patients, TLF rates were similar for those treated with ultrathin-strut or thin-strut BP-SES at 30-day (2.5% vs 1.8%; p=0.62) and 1-year follow-up (4.3% vs 4.7%; p=0.88). CONCLUSIONS: Ultrathin-strut and thin-strut BP-SES demonstrate similar early arterial healing profiles and 30-day and 1-year clinical outcomes.


Asunto(s)
Stents Liberadores de Fármacos , Intervención Coronaria Percutánea , Sirolimus , Tomografía de Coherencia Óptica , Animales , Conejos , Intervención Coronaria Percutánea/instrumentación , Intervención Coronaria Percutánea/métodos , Humanos , Sirolimus/uso terapéutico , Sirolimus/administración & dosificación , Sirolimus/farmacología , Resultado del Tratamiento , Diseño de Prótesis , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Masculino , Implantes Absorbibles , Femenino , Cicatrización de Heridas
2.
Adv Mater ; 36(8): e2304615, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934471

RESUMEN

The spleen is an important mediator of both adaptive and innate immunity. As such, attempts to modulate the immune response provided by the spleen may be conducive to improved outcomes for numerous diseases throughout the body. Here, biomimicry is used to rationally design nanomaterials capable of splenic retention and immunomodulation for the treatment of disease in a distant organ, the postinfarct heart. Engineered senescent erythrocyte-derived nanotheranostic (eSENTs) are generated, demonstrating significant uptake by the immune cells of the spleen including T and B cells, as well as monocytes and macrophages. When loaded with suberoylanilide hydroxamic acid (SAHA), the nanoagents exhibit a potent therapeutic effect, reducing infarct size by 14% at 72 h postmyocardial infarction when given as a single intravenous dose 2 h after injury. These results are supportive of the hypothesis that RBC-derived biomimicry may provide new approaches for the targeted modulation of the pathological processes involved in myocardial infarction, thus further experiments to decisively confirm the mechanisms of action are currently underway. This novel concept may have far-reaching applicability for the treatment of a number of both acute and chronic conditions where the immune responses are either stimulated or suppressed by the splenic (auto)immune milieu.


Asunto(s)
Biomimética , Infarto del Miocardio , Humanos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Corazón , Inmunidad Innata , Inmunomodulación
3.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L190-L198, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625494

RESUMEN

Pulmonary fibrosis is characterized by the accumulation of myofibroblasts in the lung and progressive tissue scarring. Fibroblasts exist across a spectrum of states, from quiescence in health to activated myofibroblasts in the setting of injury. Highly activated myofibroblasts have a critical role in the establishment of fibrosis as the predominant source of type 1 collagen and profibrotic mediators. Myofibroblasts are also highly contractile cells and can alter lung biomechanical properties through tissue contraction. Inhibiting signaling pathways involved in myofibroblast activation could therefore have significant therapeutic value. One of the ways myofibroblast activation occurs is through activation of the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) pathway, which signals through intracellular actin polymerization. However, concerns surrounding the pleiotropic and ubiquitous nature of these signaling pathways have limited the translation of inhibitory drugs. Herein, we demonstrate a novel therapeutic antifibrotic strategy using myofibroblast-targeted nanoparticles containing a MTRF/SRF pathway inhibitor (CCG-1423), which has been shown to block myofibroblast activation in vitro. Myofibroblasts were preferentially targeted via the angiotensin 2 receptor, which has been shown to be selectively upregulated in animal and human studies. These nanoparticles were nontoxic and accumulated in lung myofibroblasts in the bleomycin-induced mouse model of pulmonary fibrosis, reducing the number of these activated cells and their production of profibrotic mediators. Ultimately, in a murine model of lung fibrosis, a single injection of these drugs containing targeted nanoagents reduced fibrosis as compared with control mice. This approach has the potential to deliver personalized therapy by precisely targeting signaling pathways in a cell-specific manner, allowing increased efficacy with reduced deleterious off-target effects.


Asunto(s)
Fibrosis Pulmonar , Factores de Transcripción , Humanos , Animales , Ratones , Factores de Transcripción/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Miofibroblastos/metabolismo , Factor de Respuesta Sérica/metabolismo , Quinasas Asociadas a rho/metabolismo , Fibrosis , Pulmón/metabolismo , Nanotecnología , Diferenciación Celular
4.
Adv Healthc Mater ; 11(5): e2101387, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34879180

RESUMEN

Polymeric nanocarriers (PNCs) can be used to deliver therapeutic microRNAs (miRNAs) to solid cancers. However, the ability of these nanocarriers to specifically target tumors remains a challenge. Alternatively, extracellular vesicles (EVs) derived from tumor cells show homotypic affinity to parent cells, but loading sufficient amounts of miRNAs into EVs is difficult. Here, it is investigated whether uPAR-targeted delivery of nanococktails containing PNCs loaded with therapeutic antimiRNAs, and coated with uPA engineered extracellular vesicles (uPA-eEVs) can elicit synergistic antitumor responses. The uPA-eEVs coating on PNCs increases natural tumor targeting affinities, thereby enhancing the antitumor activity of antimiRNA nanococktails. The systemic administration of uPA-eEV-PNCs nanococktail shows a robust tumor tropism, which significantly enhances the combinational antitumor effects of antimiRNA-21 and antimiRNA-10b, and leads to significant tumor regression and extension of progression free survival for syngeneic 4T1 tumor-bearing mice. In addition, the uPA-eEV-PNCs-antimiRNAs nanococktail plus low dose doxorubicin results in a synergistic antitumor effect as evidenced by inhibition of tumor growth, reduction of lung metastases, and extension of survival of 4T1 tumor-bearing mice. The targeted combinational nanococktail strategy could be readily translated to the clinical setting by using autologous cancer cells that have flexibility for ex vivo expansion and genetic engineering.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Ratones , MicroARNs/genética , Péptidos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
5.
ACS Sens ; 6(6): 2225-2232, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34056903

RESUMEN

Platelets play a prominent role in multiple diseases, in particular arterial and venous thrombosis and also in atherosclerosis and cancer. To advance the in vivo study of the biological activity of this cell type from a basic experimental focus to a clinical focus, new translatable platelet-specific molecular imaging agents are required. Herein, we report the development of a near-infrared fluorescence probe based upon tirofiban, a clinically approved small-molecule glycoprotein IIb/IIIa inhibitor (GPIIb/IIIa). Through in vitro experiments with human platelets and in vivo ones in a murine model of deep-vein thrombosis, we demonstrate the avidity of the generated probe for activated platelets, with the added benefit of a short blood half-life, thereby enabling rapid in vivo visualization within the vasculature.


Asunto(s)
Plaquetas , Inhibidores de Agregación Plaquetaria , Animales , Humanos , Ratones , Imagen Óptica , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Tirofibán
6.
Drug Discov Today ; 26(5): 1200-1211, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33561512

RESUMEN

Cardiovascular disease (CVD) and its sequelae have long been the leading causes of death and disability in the developed world. Although mortality associated with CVD has been decreasing, due in large part to novel therapeutic options, the rate of decrease has flattened. Thus, there is a great need to investigate alternate therapeutic strategies that can increase efficacy while decreasing adverse effects. Nanomaterials have been widely investigated and have emerged as promising tools for both therapeutic and diagnostic purposes in oncology; however, the potential of nanomaterials has not been extensively explored for cardiovascular medicine. In this review, we focus on recent developments in the field of nanomedicines targeted for CVDs, with a special emphasis on cell membrane-coated nanoparticles (NPs) and their applications.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Membrana Celular/química , Humanos , Nanomedicina/métodos , Nanoestructuras
7.
Drug Discov Today ; 26(4): 902-915, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33383213

RESUMEN

Smart nanocarriers obtained from bacteria and viruses offer excellent biomimetic properties which has led to significant research into the creation of advanced biomimetic materials. Their versatile biomimicry has application as biosensors, biomedical scaffolds, immobilization, diagnostics, and targeted or personalized treatments. The inherent natural traits of biomimetic and bioinspired bacteria- and virus-derived nanovesicles show potential for their use in clinical vaccines and novel therapeutic drug delivery systems. The past few decades have seen significant progress in the bioengineering of bacteria and viruses to manipulate and enhance their therapeutic benefits. From a pharmaceutical perspective, biomimetics enable the safe integration of naturally occurring bacteria and virus particles to achieve high, stable rates of cellular transfection/infection and prolonged circulation times. In addition, biomimetic technologies can overcome safety concerns associated with live-attenuated and inactivated whole bacteria or viruses. In this review, we provide an update on the utilization of bacterial and viral particles as drug delivery systems, theranostic carriers, and vaccine/immunomodulation modalities.


Asunto(s)
Bioingeniería/tendencias , Materiales Biomiméticos/farmacología , Portadores de Fármacos/farmacología , Descubrimiento de Drogas/tendencias , Nanoestructuras/uso terapéutico , Fenómenos Fisiológicos Bacterianos , Biomimética , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Vacunas/farmacología , Fenómenos Fisiológicos de los Virus
8.
Int J Nanomedicine ; 15: 8437-8449, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162754

RESUMEN

BACKGROUND: Lipid polymer hybrid nanoparticles (LPHNPs) have been widely investigated in drug and gene delivery as well as in medical imaging. A knowledge of lipid-based surface engineering and its effects on how the physicochemical properties of LPHNPs affect the cell-nanoparticle interactions, and consequently how it influences the cytological response, is in high demand. METHODS: Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages. RESULTS: The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls. CONCLUSION: In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.


Asunto(s)
Antibacterianos/farmacología , Sistemas de Liberación de Medicamentos , Espacio Intracelular/microbiología , Macrófagos/microbiología , Nanopartículas/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Lípidos/química , Macrófagos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/efectos de los fármacos , Tamaño de la Partícula , Polímeros/química , Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacología
9.
Life Sci ; 260: 118482, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32971105

RESUMEN

Cardiovascular disease (CVD) is the most common co-morbidity associated with COVID-19 and the fatality rate in COVID-19 patients with CVD is higher compared to other comorbidities, such as hypertension and diabetes. Preliminary data suggest that COVID-19 may also cause or worsen cardiac injury in infected patients through multiple mechanisms such as 'cytokine storm', endotheliosis, thrombosis, lymphocytopenia etc. Autopsies of COVID-19 patients reveal an infiltration of inflammatory mononuclear cells in the myocardium, confirming the role of the immune system in mediating cardiovascular damage in response to COVID-19 infection and also suggesting potential causal mechanisms for the development of new cardiac pathologies and/or exacerbation of underlying CVDs in infected patients. In this review, we discuss the potential underlying molecular mechanisms that drive COVID-19-mediated cardiac damage, as well as the short term and expected long-term cardiovascular ramifications of COVID-19 infection in patients.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Enfermedades Cardiovasculares/etiología , Infecciones por Coronavirus/complicaciones , Inflamación/etiología , Neumonía Viral/complicaciones , COVID-19 , Enfermedades Cardiovasculares/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Humanos , Inflamación/patología , Pandemias , Neumonía Viral/transmisión , Neumonía Viral/virología , Pronóstico , SARS-CoV-2
11.
Artículo en Inglés | MEDLINE | ID: mdl-32403261

RESUMEN

Hand hygiene is of utmost importance as it may be contaminated easily from direct contact with airborne microorganism droplets from coughs and sneezes. Particularly in situations like pandemic outbreak, it is crucial to interrupt the transmission chain of the virus by the practice of proper hand sanitization. It can be achieved with contact isolation and strict infection control tool like maintaining good hand hygiene in hospital settings and in public. The success of the hand sanitization solely depends on the use of effective hand disinfecting agents formulated in various types and forms such as antimicrobial soaps, water-based or alcohol-based hand sanitizer, with the latter being widely used in hospital settings. To date, most of the effective hand sanitizer products are alcohol-based formulations containing 62%-95% of alcohol as it can denature the proteins of microbes and the ability to inactivate viruses. This systematic review correlated with the data available in Pubmed, and it will investigate the range of available hand sanitizers and their effectiveness as well as the formulation aspects, adverse effects, and recommendations to enhance the formulation efficiency and safety. Further, this article highlights the efficacy of alcohol-based hand sanitizer against the coronavirus.


Asunto(s)
Desinfección de las Manos , Desinfectantes para las Manos , Brotes de Enfermedades , Desinfectantes , Etanol , Desinfección de las Manos/normas , Higiene de las Manos , Desinfectantes para las Manos/toxicidad , Humanos , Control de Infecciones , Jabones , Virus , Agua
12.
ACS Nano ; 14(5): 5818-5835, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32347709

RESUMEN

Staphylococcus aureus (S. aureus) is a highly pathogenic facultative anaerobe that in some instances resides as an intracellular bacterium within macrophages and cancer cells. This pathogen can establish secondary infection foci, resulting in recurrent systemic infections that are difficult to treat using systemic antibiotics. Here, we use reconstructed apoptotic bodies (ReApoBds) derived from cancer cells as "nano decoys" to deliver vancomycin intracellularly to kill S. aureus by targeting inherent "eat me" signaling of ApoBds. We prepared ReApoBds from different cancer cells (SKBR3, MDA-MB-231, HepG2, U87-MG, and LN229) and used them for vancomycin delivery. Physicochemical characterization showed ReApoBds size ranges from 80 to 150 nm and vancomycin encapsulation efficiency of 60 ± 2.56%. We demonstrate that the loaded vancomycin was able to kill intracellular S. aureus efficiently in an in vitro model of S. aureus infected RAW-264.7 macrophage cells, and U87-MG (p53-wt) and LN229 (p53-mt) cancer cells, compared to free-vancomycin treatment (P < 0.001). The vancomycin loaded ReApoBds treatment in S. aureus infected macrophages showed a two-log-order higher CFU reduction than the free-vancomycin treatment group. In vivo studies revealed that ReApoBds can specifically target macrophages and cancer cells. Vancomycin loaded ReApoBds have the potential to kill intracellular S. aureus infection in vivo in macrophages and cancer cells.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Macrófagos , Ratones , Pruebas de Sensibilidad Microbiana , Neoplasias/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Vancomicina/farmacología
13.
J Am Soc Nephrol ; 31(5): 931-945, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32152232

RESUMEN

BACKGROUND: Arteriovenous fistulas placed surgically for dialysis vascular access have a high primary failure rate resulting from excessive inward remodeling, medial fibrosis, and thrombosis. No clinically established pharmacologic or perisurgical therapies currently address this unmet need. Statins' induction of multiple anti-inflammatory and antithrombotic effects suggests that these drugs might reduce arteriovenous fistula failure. Yet, the in vivo physiologic and molecular effects of statins on fistula patency and maturation remain poorly understood. METHODS: We randomized 108 C57Bl/6J mice to receive daily atorvastatin 1.14 mg/kg or PBS (control) starting 7 days before end-to-side carotid artery-jugular vein fistula creation and for up to 42 days after fistula creation. We then assessed longitudinally the effects of statin therapy on primary murine fistula patency and maturation. We concomitantly analyzed the in vivo arteriovenous fistula thrombogenic and inflammatory macrophage response to statin therapy, using the fibrin-targeted, near-infrared fluorescence molecular imaging agent FTP11-CyAm7 and dextranated, macrophage-avid nanoparticles CLIO-VT680. RESULTS: In vivo molecular-structural imaging demonstrated that atorvastatin significantly reduced fibrin deposition at day 7 and macrophage accumulation at days 7 and 14, findings supported by histopathologic and gene-expression analyses. Structurally, atorvastatin promoted favorable venous limb outward remodeling, preserved arteriovenous fistula blood flow, and prolonged primary arteriovenous fistula patency through day 42 (P<0.05 versus control for all measures). CONCLUSIONS: These findings provide new in vivo evidence that statins improve experimental arteriovenous fistula patency and maturation, indicating that additional clinical evaluation of statin therapy in patients on dialysis undergoing arteriovenous fistula placement is warranted.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Atorvastatina/uso terapéutico , Fibrina/metabolismo , Macrófagos/efectos de los fármacos , Grado de Desobstrucción Vascular/efectos de los fármacos , Animales , Atorvastatina/farmacología , Arteria Carótida Interna , Colágeno/metabolismo , Femenino , Fibrosis/prevención & control , Hemorreología , Inflamación/prevención & control , Venas Yugulares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Molecular , Nanopartículas , ARN Mensajero/biosíntesis , Distribución Aleatoria , Trombosis/prevención & control , Transcripción Genética , Dispositivos de Acceso Vascular
14.
Clin Rev Bone Miner Metab ; 16(4): 142-158, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30930699

RESUMEN

Bone fractures create five problems that must be resolved: bleeding, risk of infection, hypoxia, disproportionate strain, and inability to bear weight. There have been enormous advancements in our understanding of the molecular mechanisms that resolve these problems after fractures, and in best clinical practices of repairing fractures. We put forth a modern, comprehensive model of fracture repair that synthesizes the literature on the biology and biomechanics of fracture repair to address the primary problems of fractures. This updated model is a framework for both fracture management and future studies aimed at understanding and treating this complex process. This model is based upon the fracture acute phase response (APR), which encompasses the molecular mechanisms that respond to injury. The APR is divided into sequential stages of "survival" and "repair." Early in convalescence, during "survival," bleeding and infection are resolved by collaborative efforts of the hemostatic and inflammatory pathways. Later, in "repair," avascular and biomechanically insufficient bone is replaced by a variable combination of intramembranous and endochondral ossification. Progression to repair cannot occur until survival has been ensured. A disproportionate APR-either insufficient or exuberant-leads to complications of survival (hemorrhage, thrombosis, systemic inflammatory response syndrome, infection, death) and/or repair (delayed- or non-union). The type of ossification utilized for fracture repair is dependent on the relative amounts of strain and vascularity in the fracture microenvironment, but any failure along this process can disrupt or delay fracture healing and result in a similar non-union. Therefore, incomplete understanding of the principles herein can result in mismanagement of fracture care or application of hardware that interferes with fracture repair. This unifying model of fracture repair not only informs clinicians how their interventions fit within the framework of normal biological healing but also instructs investigators about the critical variables and outputs to assess during a study of fracture repair.

15.
Circ Cardiovasc Imaging ; 10(5)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28487316

RESUMEN

BACKGROUND: The role of local alterations in endothelial functional integrity in atherosclerosis remains incompletely understood. This study used nanoparticle-enhanced optical molecular imaging to probe in vivo mechanisms involving impaired endothelial barrier function in experimental atherothrombosis. METHODS AND RESULTS: Atherosclerosis was induced in rabbits (n=31) using aortic balloon injury and high-cholesterol diet. Rabbits received ultrasmall superparamagnetic iron oxide nanoparticles (CLIO) derivatized with a near-infrared fluorophore (CyAm7) 24 hours before near-infrared fluorescence imaging. Rabbits were then either euthanized (n=9) or underwent a pharmacological triggering protocol to induce thrombosis (n=22). CLIO-CyAm7 nanoparticles accumulated in areas of atheroma (P<0.05 versus reference areas). On near-infrared fluorescence microscopy, CLIO-CyAm7 primarily deposited in the superficial intima within plaque macrophages, endothelial cells, and smooth muscle cells. Nanoparticle-positive areas further exhibited impaired endothelial barrier function as illuminated by Evans blue leakage. Deeper nanoparticle deposition occurred in areas of plaque neovascularization. In rabbits subject to pharmacological triggering, plaques that thrombosed exhibited significantly higher CLIO-CyAm7 accumulation compared with nonthrombosed plaques (P<0.05). In thrombosed plaques, nanoparticles accumulated preferentially at the plaque-thrombus interface. Intravascular 2-dimensional near-infrared fluorescence imaging detected nanoparticles in human coronary artery-sized atheroma in vivo (P<0.05 versus reference segments). CONCLUSIONS: Plaques that exhibit impaired in vivo endothelial permeability in cell-rich areas are susceptible to subsequent thrombosis. Molecular imaging of nanoparticle deposition may help to identify biologically high-risk atheroma.


Asunto(s)
Endotelio Vascular/diagnóstico por imagen , Imagen Óptica/métodos , Placa Aterosclerótica/diagnóstico por imagen , Trombosis de la Vena/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Endotelio Vascular/fisiopatología , Imagen Molecular/métodos , Nanopartículas , Placa Aterosclerótica/complicaciones , Placa Aterosclerótica/fisiopatología , Conejos , Trombosis de la Vena/complicaciones , Trombosis de la Vena/fisiopatología
16.
Eur Heart J Cardiovasc Imaging ; 18(11): 1253-1261, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031233

RESUMEN

AIMS: (i) to evaluate a novel hybrid near-infrared fluorescence-intravascular ultrasound (NIRF-IVUS) system in coronary and peripheral swine arteries in vivo; (ii) to assess simultaneous quantitative biological and morphological aspects of arterial disease. METHODS AND RESULTS: Two 9F/15MHz peripheral and 4.5F/40MHz coronary near-infrared fluorescence (NIRF)-IVUS catheters were engineered to enable accurate co-registrtation of biological and morphological readings simultaneously in vivo. A correction algorithm utilizing IVUS information was developed to account for the distance-related fluorescence attenuation due to through-blood imaging. Corrected NIRF (cNIRF)-IVUS was applied for in vivo imaging of angioplasty-induced vascular injury in swine peripheral arteries and experimental fibrin deposition on coronary artery stents, and of atheroma in a rabbit aorta, revealing feasibility to intravascularly assay plaque structure and inflammation. The addition of ICG-enhanced NIRF assessment improved the detection of angioplasty-induced endothelial damage compared to standalone IVUS. In addition, NIRF detection of coronary stent fibrin by in vivo cNIRF-IVUS imaging illuminated stent pathobiology that was concealed on standalone IVUS. Fluorescence reflectance imaging and microscopy of resected tissues corroborated the in vivo findings. CONCLUSIONS: Integrated cNIRF-IVUS enables simultaneous co-registered through-blood imaging of disease related morphological and biological alterations in coronary and peripheral arteries in vivo. Clinical translation of cNIRF-IVUS may significantly enhance knowledge of arterial pathobiology, leading to improvements in clinical diagnosis and prognosis, and helps to guide the development of new therapeutic approaches for arterial diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Enfermedades Vasculares Periféricas/diagnóstico por imagen , Espectrometría de Fluorescencia/métodos , Espectroscopía Infrarroja Corta/métodos , Ultrasonografía Intervencional/métodos , Algoritmos , Animales , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/patología , Enfermedades Vasculares Periféricas/patología , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Conejos , Stents , Porcinos
17.
Eur Heart J ; 38(6): 447-455, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-26685129

RESUMEN

AIMS: Fibrin deposition and absent endothelium characterize unhealed stents that are at heightened risk of stent thrombosis. Optical coherence tomography (OCT) is increasingly used for assessing stent tissue coverage as a measure of healed stents, but cannot precisely identify whether overlying tissue represents physiological neointima. Here we assessed and compared fibrin deposition and persistence on bare metal stent (BMS) and drug-eluting stent (DES) using near-infrared fluorescence (NIRF) molecular imaging in vivo, in combination with simultaneous OCT stent coverage. METHODS AND RESULTS: Rabbits underwent implantation of one BMS and one DES without overlap in the infrarenal aorta (N = 20 3.5 × 12 mm). At Days 7 and/or 28, intravascular NIRF-OCT was performed following the injection of fibrin-targeted NIRF molecular imaging agent FTP11-CyAm7. Intravascular NIRF-OCT enabled high-resolution imaging of fibrin overlying stent struts in vivo, as validated by histopathology. Compared with BMS, DES showed greater fibrin deposition and fibrin persistence at Days 7 and 28 (P < 0.01 vs. BMS). Notably, for edge stent struts identified as covered by OCT on Day 7, 92.8 ± 9.5% of DES and 55.8 ± 23.6% of BMS struts were NIRF fibrin positive (P < 0.001). At Day 28, 18.6 ± 10.6% (DES) and 5.1 ± 8.7% (BMS) of OCT-covered struts remained fibrin positive (P < 0.001). CONCLUSION: Intravascular NIRF fibrin molecular imaging improves the detection of unhealed stents, using clinically translatable technology that complements OCT. A sizeable percentage of struts deemed covered by OCT are actually covered by fibrin, particularly in DES, and therefore such stents might remain prothrombotic. These findings have implications for the specificity of standalone clinical OCT assessments of stent healing.

18.
Theranostics ; 5(12): 1317-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26516370

RESUMEN

Fibrinolytic therapy of venous thromboembolism (VTE) is increasingly utilized, yet limited knowledge is available regarding in vivo mechanisms that govern fibrinolytic efficacy. In particular, it is unknown how age-dependent thrombus organization limits direct blood contact with fibrin, the target of blood-based fibrinolytic agents. Utilizing high-resolution in vivo optical molecular imaging with FTP11, a near-infrared fluorescence (NIRF) fibrin-specific reporter, here we investigated the in vivo interrelationships of blood accessibility to fibrin, thrombus age, thrombus neoendothelialization, and fibrinolysis in murine venous thrombosis (VT). In both stasis VT and non-stasis VT, NIRF microscopy showed that FTP11 fibrin binding was thrombus age-dependent. FTP11 localized to the luminal surface of early-stage VT, but only minimally to subacute VT (p<0.001). Transmission electron microscopy of early stage VT revealed direct blood cell contact with luminal fibrin-rich surfaces. In contrast, subacute VT exhibited an encasing CD31+ neoendothelial layer that limited blood cell contact with thrombus fibrin in both VT models. Next we developed a theranostic strategy to predict fibrinolytic efficacy based on the in vivo fibrin accessibility to blood NIRF signal. Mice with variably aged VT underwent FTP11 injection and intravital microscopy (IVM), followed by tissue plasminogen activator infusion to induce VT fibrinolysis. Fibrin molecular IVM revealed that early stage VT, but not subacute VT, bound FTP11 (p<0.05), and experienced higher rates of fibrinolysis and total fibrinolysis (p<0.05 vs. subacute VT). Before fibrinolysis, the baseline FTP11 NIRF signal predicted the net fibrinolysis at 60 minutes (p<0.001). Taken together, these data provide novel insights into the temporal evolution of VT and its susceptibility to therapeutic fibrinolysis. Fibrin molecular imaging may provide a theranostic strategy to identify venous thrombi amenable to fibrinolytic therapies.


Asunto(s)
Fibrina/análisis , Fibrinolíticos/administración & dosificación , Imagen Molecular/métodos , Trombosis/patología , Trombosis de la Vena/tratamiento farmacológico , Trombosis de la Vena/patología , Animales , Modelos Animales de Enfermedad , Indoles/metabolismo , Masculino , Ratones Endogámicos C57BL , Oligopéptidos/metabolismo , Coloración y Etiquetado/métodos
19.
Circ Res ; 117(6): 502-512, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26199323

RESUMEN

RATIONALE: The development of molecular imaging approaches that assess specific immunopathologic mechanisms can advance the study of myocarditis. OBJECTIVE: This study validates a novel molecular imaging tool that enables the in vivo visualization of granzyme B activity, a major effector of cytotoxic CD8+ T lymphocytes. METHODS AND RESULTS: We synthesized and optimized a fluorogenic substrate capable of reporting on granzyme B activity and examined its specificity ex vivo in mice hearts with experimental cytotoxic CD8+ T lymphocyte-mediated myocarditis using fluorescence reflectance imaging, validated by histological examination. In vivo experiments localized granzyme B activity in hearts with acute myocarditis monitored by fluorescent molecular tomography in conjunction with coregistered computed tomography imaging. A model anti-inflammatory intervention (dexamethasone administration) in vivo reduced granzyme B activity (vehicle versus dexamethasone: 504±263 versus 194±77 fluorescence intensities in hearts; P=0.002). CONCLUSIONS: Molecular imaging of granzyme B activity can visualize T cell-mediated myocardial injury and monitor the response to an anti-inflammatory intervention.


Asunto(s)
Granzimas/metabolismo , Miocarditis/enzimología , Miocarditis/inmunología , Animales , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/inmunología , Activación Enzimática/fisiología , Colorantes Fluorescentes/análisis , Granzimas/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocarditis/patología
20.
PLoS One ; 10(2): e0116621, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25680183

RESUMEN

Despite anticoagulation therapy, up to one-half of patients with deep vein thrombosis (DVT) will develop the post-thrombotic syndrome (PTS). Improving the long-term outcome of DVT patients at risk for PTS will therefore require new approaches. Here we investigate the effects of statins--lipid-lowering agents with anti-thrombotic and anti-inflammatory properties--in decreasing thrombus burden and decreasing vein wall injury, mediators of PTS, in established murine stasis and non-stasis chemical-induced venous thrombosis (N = 282 mice). Treatment of mice with daily atorvastatin or rosuvastatin significantly reduced stasis venous thrombus burden by 25% without affecting lipid levels, blood coagulation parameters, or blood cell counts. Statin-driven reductions in VT burden (thrombus mass for stasis thrombi, intravital microscopy thrombus area for non-stasis thrombi) compared similarly to the therapeutic anticoagulant effects of low molecular weight heparin. Blood from statin-treated mice showed significant reductions in platelet aggregation and clot stability. Statins additionally reduced thrombus plasminogen activator inhibitor-1 (PAI-1), tissue factor, neutrophils, myeloperoxidase, neutrophil extracellular traps (NETs), and macrophages, and these effects were most notable in the earlier timepoints after DVT formation. In addition, statins reduced DVT-induced vein wall scarring by 50% durably up to day 21 in stasis VT, as shown by polarized light microscopy of picrosirius red-stained vein wall collagen. The overall results demonstrate that statins improve VT resolution via profibrinolytic, anticoagulant, antiplatelet, and anti-vein wall scarring effects. Statins may therefore offer a new pharmacotherapeutic approach to improve DVT resolution and to reduce the post-thrombotic syndrome, particularly in subjects who are ineligible for anticoagulation therapy.


Asunto(s)
Antiinflamatorios/farmacología , Anticoagulantes/farmacología , Cicatriz/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Venas/efectos de los fármacos , Trombosis de la Vena/tratamiento farmacológico , Animales , Antiinflamatorios/uso terapéutico , Anticoagulantes/uso terapéutico , Cicatriz/complicaciones , Fibrinólisis/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Masculino , Ratones , Inhibidores de Agregación Plaquetaria/uso terapéutico , Trombosis de la Vena/complicaciones , Trombosis de la Vena/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...