Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(11): 113520, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461491

RESUMEN

The Imaging Spectroscopy Snout (ISS) used at the National Ignition Facility is able to simultaneously collect neutron pinhole images, 1D spatially resolved x-ray spectra, and time resolved x-ray pinhole images. To measure the x-ray spectra, the ISS can be equipped with up to four different transmission crystals, each offering different energy ranges from ∼7.5 to ∼12 keV and different resolutions. Characterizing and calibrating such instruments is of paramount importance in order to extract meaningful results from experiments. More specifically, we characterized different ISS transmission-type alpha-Quartz crystals by measuring their responses as a function of photon energy, from which we inferred the angle-integrated reflectivity for each crystal's working reflections. These measurements were made at the Lawrence Livermore National Laboratory calibration station dedicated to the characterization of x-ray spectrometers. The sources used covered a wide x-ray range-from a few to 30 keV; the source diameter was ∼0.6 mm. The experimental results are discussed alongside theoretical calculations using the pyTTE model.

2.
Rev Sci Instrum ; 92(5): 053511, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243355

RESUMEN

Being able to provide high-resolution x-ray radiography is crucial in order to study hydrodynamic instabilities in the high-energy density regime at the National Ignition Facility (NIF). Current capabilities limit us to about 20 µm resolution using pinholes, but recent studies have demonstrated the high-resolution capability of the Fresnel zone plate optics at the NIF, measuring 2.3 µm resolution. Using a zinc Heα line at 9 keV as a backlighter, we obtained a radiograph of Rayleigh-Taylor instabilities with a measured resolution of under 3 µm. Two images were taken with a time integrated detector and were time gated by a laser pulse duration of 600 ps, and a third image was taken with a framing camera with a 100 ps time gate on the same shot and on the same line of sight. The limiting factors on image quality for these two cases are the motion blur and the signal to noise ratio, respectively. We also suggest solutions to increase the image quality.

3.
Rev Sci Instrum ; 91(4): 043508, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357683

RESUMEN

A line VISAR (Velocity Interferometer System for Any Reflector) has been designed and commissioned at the Sandia National Laboratory's Z-machine. The instrument consists of an F/2 collection system, beam transport, and an interferometer table that contains two Mach-Zehnder type interferometers and an eight channel Gated Optical Imaging (GOI) system. The VISAR probe laser operates at the 532 nm wavelength, and the GOI bandpass is 540-600 nm. The output of each interferometer is passed to an optical streak camera with four selectable sweep speeds. The system is designed with three interchangeable optics modules to select a full field of view of 1 mm, 2 mm, or 4 mm. The optical beam transport system connects the target image plane to the interferometers and the gated optical imagers. The target is integrated into a sacrificial final optics assembly that is integral to the transport beamline.

4.
Rev Sci Instrum ; 90(1): 013702, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709218

RESUMEN

The Crystal Backlighter Imager (CBI) is a quasi-monochromatic, near-normal incidence, spherically bent crystal imager developed for the National Ignition Facility (NIF), which will allow inertial confinement fusion capsule implosions to be radiographed close to stagnation. This is not possible using the standard pinhole-based area-backlighter configuration, as the self-emission from the capsule hotspot overwhelms the backlighter signal in the final stages of the implosion. The CBI mitigates the broadband self-emission from the capsule hot spot by using the extremely narrow bandwidth inherent to near-normal-incidence Bragg diffraction. Implementing a backlighter system based on near-normal reflection in the NIF chamber presents unique challenges, requiring the CBI to adopt novel engineering and operational strategies. The CBI currently operates with an 11.6 keV backlighter, making it the highest energy radiography diagnostic based on spherically bent crystals to date. For a given velocity, Doppler shift is proportional to the emitted photon energy. At 11.6 keV, the ablation velocity of the backlighter plasma results in a Doppler shift that is significant compared to the bandwidth of the instrument and the width of the atomic line, requiring that the shift be measured to high accuracy and the optics aligned accordingly to compensate. Experiments will be presented that used the CBI itself to measure the backlighter Doppler shift to an accuracy of better than 1 eV. These experiments also measured the spatial resolution of CBI radiographs at 7.0 µm, close to theoretical predictions. Finally, results will be presented from an experiment in which the CBI radiographed a capsule implosion driven by a 1 MJ NIF laser pulse, demonstrating a significant (>100) improvement in the backlighter to self-emission ratio compared to the pinhole-based area-backlighter configuration.

5.
Rev Sci Instrum ; 89(10): 10G112, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399878

RESUMEN

A facility to calibrate x-ray imaging optics was built at Lawrence Livermore National Laboratory to support high energy density (HED) and inertial confinement fusion (ICF) diagnostics such as those at the National Ignition Facility and the Sandia Z-Machine. Calibration of the spectral reflectivity and resolution of these x-ray diagnostics enable absolute determination of the x-ray flux and wavelengths generated in the HED and ICF experiments. Measurement of the optic point spread function is used to determine spatial resolution of the optic. This facility was constructed to measure (1) the x-ray reflectivity to ±5% over a spectral range from 5 to 60 keV; (2) point spread functions with a resolution of 50 µm (currently) and 13 µm (future) in the image plane; and (3) optic distance relative to the x-ray source and detector to within ±100 µm in each dimension. This article describes the capabilities of the calibration facility, concept of operations, and initial data from selected x-ray optics.

6.
Rev Sci Instrum ; 87(11): 11E316, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910471

RESUMEN

Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 µm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 µm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766-774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 µm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a "narrow band" energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

7.
Rev Sci Instrum ; 85(11): 11D601, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430177

RESUMEN

We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO2 foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

8.
Rev Sci Instrum ; 85(11): 11D611, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430187

RESUMEN

Current pinhole x ray imaging at the National Ignition Facility (NIF) is limited in resolution and signal throughput to the detector for Inertial Confinement Fusion applications, due to the viable range of pinhole sizes (10-25 µm) that can be deployed. A higher resolution and throughput diagnostic is in development using a Kirkpatrick-Baez microscope system (KBM). The system will achieve <9 µm resolution over a 300 µm field of view with a multilayer coating operating at 10.2 keV. Presented here are the first images from the uncoated NIF KBM configuration demonstrating high resolution has been achieved across the full 300 µm field of view.

9.
Rev Sci Instrum ; 83(10): 10E525, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23127032

RESUMEN

Hohlraums are employed at the national ignition facility to convert laser energy into a thermal x-radiation drive, which implodes a fusion capsule, thus compressing the fuel. The x-radiation drive is measured with a low spectral resolution, time-resolved x-ray spectrometer, which views the region around the hohlraum's laser entrance hole. This measurement has no spatial resolution. To convert this to the drive inside the hohlraum, the size of the hohlraum's opening ("clear aperture") and fraction of the measured x-radiation, which comes from this opening, must be known. The size of the clear aperture is measured with the time integrated static x-ray imager (SXI). A soft x-ray imaging channel has been added to the SXI to measure the fraction of x-radiation emitted from inside the clear aperture. A multilayer mirror plus filter selects an x-ray band centered at 870 eV, near the peak of the x-ray spectrum of a 300 eV blackbody. Results from this channel and corrections to the x-radiation drive are discussed.

10.
Appl Opt ; 50(8): 1136-57, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21394186

RESUMEN

The National Ignition Facility (NIF) is the world's largest optical instrument, comprising 192 37 cm square beams, each generating up to 9.6 kJ of 351 nm laser light in a 20 ns beam precisely tailored in time and spectrum. The Facility houses a massive (10 m diameter) target chamber within which the beams converge onto an ∼1 cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5 m×2 m×1 m) line-replaceable optics assemblies to within ±1 mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10 min and alignment to target chamber center within 44 min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50 µm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.

11.
Rev Sci Instrum ; 81(10): 10E317, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21034015

RESUMEN

A 5 ps gated framing camera was demonstrated using the pulse-dilation of a drifting electron signal. The pulse-dilation is achieved by accelerating a photoelectron derived information pulse with a time varying potential [R. D. Prosser, J. Phys. E 9, 57 (1976)]. The temporal dependence of the accelerating potential causes a birth time dependent axial velocity dispersion that spreads the pulse as it transits a drift region. The expanded pulse is then imaged with a conventional gated microchannel plate based framing camera and the effective gating time of the combined instrument is reduced over that of the framing camera alone. In the drift region, electron image defocusing in the transverse or image plane is prevented with a large axial magnetic field. Details of the unique issues associated with rf excited photocathodes were investigated numerically and a prototype instrument based on this principle was recently constructed. Temporal resolution of the instrument was measured with a frequency tripled femtosecond laser operating at 266 nm. The system demonstrated 20× temporal magnification and the results are presented here. X-ray image formation strategies and photometric calculations for inertial confinement fusion implosion experiments are also examined.

12.
Rev Sci Instrum ; 79(10): 10E303, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044465

RESUMEN

A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 microm resolution over a 1500 microm field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/DeltaE>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...