Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2018): 20232522, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38444337

RESUMEN

Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.


Asunto(s)
Ecosistema , Plaguicidas , Cambio Climático , Incertidumbre
2.
Ecol Evol ; 13(11): e10686, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020703

RESUMEN

Metacommunity theory has advanced scientific understanding of how species interactions and spatial processes influence patterns of biodiversity and community structure across landscapes. While the central tenets of metacommunity theory have been promoted as pivotal considerations for conservation management, few field experiments have tested the validity of metacommunity predictions. Here, we tested one key prediction of metacommunity theory-that decreasing habitat connectivity should erode metacommunity structure by hindering species movement between patches. For 2 years, we manipulated an experimental old-field grassland ecosystem via mowing to represent four levels of habitat connectivity: (1) open control, (2) full connectivity, (3) partial connectivity, and (4) no connectivity. Within each treatment plot (10 × 10 m, n = 4 replicates), we measured the abundance and diversity (i.e., alpha and beta) of both flying and ground arthropods using sticky and pitfall traps, respectively. We found that the abundance and diversity of highly mobile flying arthropods were unaffected by habitat connectivity, whereas less mobile ground arthropods were highly impacted. The mean total abundance of ground arthropods was 2.5× and 2× higher in the control and partially connected plots compared to isolated patches, respectively. We also reveal that habitat connectivity affected the trophic interactions of ground arthropods, with predators (e.g., wolf spiders, ground spiders) being highly positively correlated with micro-detritivores (springtails, mites) but not macro-detritivores (millipedes, isopods) as habitat connectivity increased. Together these findings indicate that changes in habitat connectivity can alter the metacommunity structure for less mobile organisms such as ground arthropods. Because of their essential roles in terrestrial ecosystem functioning and services, we recommend that conservationists, restoration practitioners, and land managers include principles of habitat connectivity for ground arthropods when designing biodiversity management programs.

3.
PLoS One ; 18(10): e0293176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903108

RESUMEN

Intraguild predation (IGP)-predation between generalist predators (IGPredator and IGPrey) that potentially compete for a shared prey resource-is a common interaction module in terrestrial food webs. Understanding temporal variation in webs with widespread IGP is relevant to testing food web theory. We investigated temporal constancy in the structure of such a system: the spider-focused food web of the forest floor. Multiplex PCR was used to detect prey DNA in 3,300 adult spiders collected from the floor of a deciduous forest during spring, summer, and fall over four years. Because only spiders were defined as consumers, the web was tripartite, with 11 consumer nodes (spider families) and 22 resource nodes: 11 non-spider arthropod taxa (order- or family-level) and the 11 spider families. Most (99%) spider-spider predation was on spider IGPrey, and ~90% of these interactions were restricted to spider families within the same broadly defined foraging mode (cursorial or web-spinning spiders). Bootstrapped-derived confidence intervals (BCI's) for two indices of web structure, restricted connectance and interaction evenness, overlapped broadly across years and seasons. A third index, % IGPrey (% IGPrey among all prey of spiders), was similar across years (~50%) but varied seasonally, with a summer rate (65%) ~1.8x higher than spring and fall. This seasonal pattern was consistent across years. Our results suggest that extensive spider predation on spider IGPrey that exhibits consistent seasonal variation in frequency, and that occurs primarily within two broadly defined spider-spider interaction pathways, must be incorporated into models of the dynamics of forest-floor food webs.


Asunto(s)
Artrópodos , Arañas , Humanos , Animales , Cadena Alimentaria , Estaciones del Año , Conducta Predatoria
4.
Trends Ecol Evol ; 38(5): 381-384, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36754709

RESUMEN

Amid a growing disciplinary commitment to inclusion in ecology and evolutionary biology (EEB), it is critical to consider how the use of scientific language can harm members of our research community. Here, we outline a path for identifying and revising harmful terminology to foster inclusion in EEB.


Asunto(s)
Ecología , Terminología como Asunto , Diversidad, Equidad e Inclusión
5.
J Anim Ecol ; 90(7): 1714-1726, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33782983

RESUMEN

Functional traits are useful for characterizing variation in community and ecosystem dynamics. Most advances in trait-based ecology to date centre on plant functional traits, although there is an increasing recognition that animal traits are also key contributors to processes operating at the community or ecosystem scale. Terrestrial invertebrates are incredibly diverse and ubiquitous animals with important roles in nutrient cycling. Despite their widespread influence on ecosystem processes, we currently lack a synthetic understanding of how invertebrate functional traits affect terrestrial nutrient cycling. We present a meta-analysis of 511 paired observations from 122 papers that examined how invertebrate functional traits affected litter decomposition rates, nitrogen pools and litter C:N ratios. Based on the available data, we specifically assessed the effects of feeding mode (bioturbation, detritus shredding, detritus grazing, leaf chewing, leaf piercing, ambush predators, active hunting predators) and body size (macro- and micro-invertebrates) on nutrient cycling. The effects of invertebrates on terrestrial nutrient cycling varied according to functional trait. The inclusion of both macro- (≥2 mm) and micro-invertebrates (<2 mm) increased litter decomposition by 20% and 19%, respectively. All detritivorous feeding modes enhanced litter decomposition rates, with bioturbators, detritus shredders and detritus grazers increasing decomposition by 28%, 22% and 15%, respectively. Neither herbivore feeding mode (e.g. leaf chewers and leaf piercers) nor predator hunting mode (ambush and active hunting) affected decomposition. We also revealed that bioturbators and detritus grazers increased soil nitrogen availability by 99% and 70%, respectively, and that leaf-chewing herbivores had a weak effect on litterfall stoichiometry via reducing C:N ratios by 11%. Although functional traits might be useful predictors of ecosystem processes, our findings suggest context-dependent effects of invertebrate traits on terrestrial nutrient cycling. Detritivore functional traits (i.e. bioturbators, detritus shredders and detritus grazers) are more consistent with increased rates of nutrient cycling, whereas our currently characterized predator and herbivore traits are less predictive. Future research is needed to identify, standardize and deliberately study the impacts of invertebrate functional traits on nutrient cycling in hopes of revealing the key functional traits governing ecosystem functioning worldwide.


Asunto(s)
Ecosistema , Invertebrados , Animales , Nitrógeno , Nutrientes , Hojas de la Planta , Plantas
6.
Ecology ; 102(1): e03197, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966617

RESUMEN

Pulsed fluxes of organisms across ecosystem boundaries can exert top-down and bottom-up effects in recipient food webs, through both direct effects on the subsidized trophic levels and indirect effects on other components of the system. While previous theoretical and empirical studies demonstrate the influence of allochthonous subsidies on bottom-up and top-down processes, understanding how these forces act in conjunction is still limited, particularly when an allochthonous resource can simultaneously subsidize multiple trophic levels. Using the Lake Mývatn region in Iceland as an example system of allochthony and its potential effects on multiple trophic levels, we analyzed a mathematical model to evaluate how pulsed subsidies of aquatic insects affect the dynamics of a soil-plant-arthropod food web. We found that the relative balance of top-down and bottom-up effects on a given food web compartment was determined by trophic position, subsidy magnitude, and top predators' ability to exploit the subsidy. For intermediate trophic levels (e.g., detritivores and herbivores), we found that the subsidy could either alleviate or intensify top-down pressure from the predator. For some parameter combinations, alleviation and intensification occurred sequentially during and after the resource pulse. The total effect of the subsidy on detritivores and herbivores, including top-down and bottom-up processes, was determined by the rate at which predator consumption saturated with increasing size of the allochthonous subsidy, with greater saturation leading to increased bottom-up effects. Our findings illustrate how resource pulses to multiple trophic levels can influence food web dynamics by changing the relative strength of bottom-up and top-down effects, with bottom-up predominating top-down effects in most scenarios in this subarctic system.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Herbivoria , Islandia , Insectos
7.
Oecologia ; 191(3): 587-599, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31529212

RESUMEN

While aboveground impacts of invasive plants are well documented, their influence on soil food webs remains less understood. Previous research has revealed that bottom-up forces are widespread in soil food webs of woodlands. Thus, an invasive plant that negatively impacts the base of the food web will likely decrease primary consumers as well as their predators. We examined how a North American plant invader, garlic mustard (Alliaria petiolata), affects arthropod primary (springtails and oribatid mites) and secondary (predaceous mites) consumers of the soil food web via changes to fungal resources. We measured the abundances of plants, soil fungi, fungivores, and predators in garlic mustard-invaded and uninvaded 1-m2 plots in five Midwestern USA woodlands. We then conducted a mesocosm (0.25-m2 plots) experiment to tease apart the direct and indirect effects of garlic mustard by manipulating plant identity (garlic mustard vs. native plant), soil history (invaded vs. uninvaded), and fungicide application (fungicide vs. no fungicide). Our first study revealed that plots without garlic mustard had 2.8 and 1.4 × more fungi and fungivores, respectively. Predator densities did not differ. Fungal composition and structural equation modeling (SEM) revealed the garlic mustard effects on fungivores were correlated with fungal declines. The mesocosm experiment confirmed that the impacts were indirect, as fungicide plots harbored similar fungivore densities, whereas fungivore densities differed according to plant identity and soil history in the fungicide-free plots. Our results reveal that by altering soil fungal abundance, an invasive plant can indirectly affect primary consumers in soil food webs, but this indirect effect does not influence predators.


Asunto(s)
Artrópodos , Cadena Alimentaria , Animales , Bosques , Suelo , Microbiología del Suelo
8.
Ecol Evol ; 9(4): 2018-2030, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30847089

RESUMEN

Understanding the factors that determine invasion success for non-native plants is crucial for maintaining global biodiversity and ecosystem functioning. One hypothesized mechanism by which many exotic plants can become invasive is through the disruption of key plant-mycorrhizal mutualisms, yet few studies have investigated how these disruptions can lead to invader success. We present an individual-based model to examine how mutualism strengths between a native plant (Impatiens capensis) and mycorrhizal fungus can influence invasion success for a widespread plant invader, Alliaria petiolata (garlic mustard). Two questions were investigated as follows: (a) How does the strength of the mutualism between the native I. capensis and a mycorrhizal fungus affect resistance (i.e., native plant maintaining >60% of final equilibrium plant density) to garlic mustard invasion? (b) Is there a non-linear relationship between initial garlic mustard density and invasiveness (i.e., garlic mustard representing >60% of final equilibrium plant density)? Our findings indicate that either low (i.e., facultative) or high (i.e., obligate) mutualism strengths between the native plant and mycorrhizal fungus were more likely to lead to garlic mustard invasiveness than intermediate levels, which resulted in higher resistance to garlic mustard invasion. Intermediate mutualism strengths allowed I. capensis to take advantage of increased fitness when the fungus was present but remained competitive enough to sustain high numbers without the fungus. Though strong mutualisms had the highest fitness without the invader, they proved most susceptible to invasion because the loss of the mycorrhizal fungus resulted in a reproductive output too low to compete with garlic mustard. Weak mutualisms were more competitive than strong mutualisms but still led to garlic mustard invasion. Furthermore, we found that under intermediate mutualism strengths, the initial density of garlic mustard (as a proxy for different levels of plant invasion) did not influence its invasion success, as high initial densities of garlic mustard did not lead to it becoming dominant. Our results indicate that plants that form weak or strong mutualisms with mycorrhizal fungi are most vulnerable to invasion, whereas intermediate mutualisms provide the highest resistance to an allelopathic invader.

9.
Ecol Lett ; 19(3): 328-35, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26757702

RESUMEN

Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta-analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure.


Asunto(s)
Cadena Alimentaria , Especies Introducidas , Fenómenos Fisiológicos de las Plantas , Bosques , Pradera , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...