Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Br J Haematol ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763166

RESUMEN

Histiocytic diseases arise from MAPK mutations in myeloid progenitors. Depending on whether the progenitor follows a dendritic cell or macrophage/monocyte lineage the final histology results in Langerhans cell histiocytosis, Rosai-Dorfman disease or Erdheim-Chester disease. Commentary on: Friedman et al. Mixed histiocytic neoplasms: A multicentre series revealing diverse somatic mutations and responses to targeted therapy. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19462.

2.
Cancer ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687639

RESUMEN

Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by lesions with CD1a-positive/Langerin (CD207)-positive histiocytes and inflammatory infiltrate that can cause local tissue damage and systemic inflammation. Clinical presentations range from single lesions with minimal impact to life-threatening disseminated disease. Therapy for systemic LCH has been established through serial trials empirically testing different chemotherapy agents and durations of therapy. However, fewer than 50% of patients who have disseminated disease are cured with the current standard-of-care vinblastine/prednisone/(mercaptopurine), and treatment failure is associated with long-term morbidity, including the risk of LCH-associated neurodegeneration. Historically, the nature of LCH-whether a reactive condition versus a neoplastic/malignant condition-was uncertain. Over the past 15 years, seminal discoveries have broadly defined LCH pathogenesis; specifically, activating mitogen-activated protein kinase pathway mutations (most frequently, BRAFV600E) in myeloid precursors drive lesion formation. LCH therefore is a clonal neoplastic disorder, although secondary inflammatory features contribute to the disease. These paradigm-changing insights offer a promise of rational cures for patients based on individual mutations, clonal reservoirs, and extent of disease. However, the pace of clinical trial development behind lags the kinetics of translational discovery. In this review, the authors discuss the current understanding of LCH biology, clinical characteristics, therapeutic strategies, and opportunities to improve outcomes for every patient through coordinated agent prioritization and clinical trial efforts.

3.
Br J Haematol ; 204(5): 1888-1893, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501389

RESUMEN

Over 50% of patients with systemic LCH are not cured with front-line therapies, and data to guide salvage options are limited. We describe 58 patients with LCH who were treated with clofarabine. Clofarabine monotherapy was active against LCH in this cohort, including heavily pretreated patients with a systemic objective response rate of 92.6%, higher in children (93.8%) than adults (83.3%). BRAFV600E+ variant allele frequency in peripheral blood is correlated with clinical responses. Prospective multicentre trials are warranted to determine optimal dosing, long-term efficacy, late toxicities, relative cost and patient-reported outcomes of clofarabine compared to alternative LCH salvage therapy strategies.


Asunto(s)
Clofarabina , Histiocitosis de Células de Langerhans , Humanos , Clofarabina/uso terapéutico , Clofarabina/administración & dosificación , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Masculino , Femenino , Adulto , Adolescente , Niño , Persona de Mediana Edad , Preescolar , Adulto Joven , Anciano , Recurrencia , Proteínas Proto-Oncogénicas B-raf/genética , Lactante , Resultado del Tratamiento , Terapia Recuperativa , Nucleótidos de Adenina/uso terapéutico , Nucleótidos de Adenina/administración & dosificación , Nucleótidos de Adenina/efectos adversos , Arabinonucleósidos/uso terapéutico , Arabinonucleósidos/administración & dosificación , Arabinonucleósidos/efectos adversos
4.
Br J Haematol ; 204(5): 1882-1887, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501390

RESUMEN

Optimal therapeutic approaches for advanced Langerhans cell histiocytosis (LCH) are not known. We assessed the safety and efficacy of combined chemotherapy with MAPK pathway inhibition in 10 patients with refractory systemic disease and/or LCH-associated neurodegeneration. Overall response rate was 9/10 (90%) for the entire cohort: 5/5 (100%) for patients with systemic disease and 6/7 (86%) for patients with central nervous system disease. BRAFV600E+ peripheral blood fraction decreased in 5/6 (83%). Toxicities included fever, skin rash, myalgias, neuropathy, cytopenias and hypocalcaemia. Prospective trials are required to optimize combination strategies, determine potential to achieve cure and compare outcomes to chemotherapy or MAPK inhibitor monotherapy.


Asunto(s)
Histiocitosis de Células de Langerhans , Humanos , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Masculino , Femenino , Adulto , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Persona de Mediana Edad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Adolescente , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/administración & dosificación , Adulto Joven , Niño , Preescolar , Recurrencia , Resultado del Tratamiento
6.
Immunity ; 56(12): 2790-2802.e6, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091952

RESUMEN

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing mitogen-activated protein kinase (MAPK)-activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some individuals with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we showed that LCH-ND was caused by myeloid cells that were clonal with peripheral LCH cells. Circulating BRAFV600E+ myeloid cells caused the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiated into senescent, inflammatory CD11a+ macrophages that accumulated in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced peripheral inflammation, brain parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent targetable mechanisms of LCH-ND.


Asunto(s)
Histiocitosis de Células de Langerhans , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/patología , Histiocitosis de Células de Langerhans/terapia , Encéfalo/metabolismo , Células Mieloides/metabolismo , Diferenciación Celular
7.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37873371

RESUMEN

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing MAPK activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some patients with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we show that LCH-ND is caused by myeloid cells that are clonal with peripheral LCH cells. We discovered that circulating BRAF V600E + myeloid cells cause the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiate into senescent, inflammatory CD11a + macrophages that accumulate in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent novel and targetable mechanisms of ND.

8.
J Neurosurg Case Lessons ; 6(16)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37870750

RESUMEN

BACKGROUND: Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis characterized histologically by foamy histiocytes and Touton giant cells in a background of fibrosis. Bone pain with long bone osteosclerosis is highly specific for ECD. Central nervous system involvement is rare, although dural, hypothalamic, cerebellar, brainstem, and sellar region involvement has been described. OBSERVATIONS: A 59-year-old man with a history of ureteral obstruction, medically managed petit mal seizures, and a left temporal lesion followed with serial magnetic resonance imaging (MRI) presented with worsening seizure control. Repeat MRI identified bilateral amygdala region lesions. Gradual growth of the left temporal lesion over 1 year with increasing seizure frequency prompted resection. A non-Langerhans cell histiocytosis with a BRAF V600E mutation was identified on pathology. Imaging findings demonstrated retroperitoneal fibrosis and long bone osteosclerosis with increased fluorodeoxyglucose uptake that, together with the neuropathologic findings, were diagnostic of ECD. LESSONS: This case of biopsy-proven ECD is unique in that the singular symptom was seizures well controlled with medical management in the presence of similarly located bilateral anterior mesial temporal lobe lesions. Although ECD is rare intracranially, its variable imaging presentation, including the potential to mimic seizure-associated medial temporal lobe tumors, emphasizes the need for a wide differential diagnosis.

9.
Blood Adv ; 7(14): 3725-3734, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37042921

RESUMEN

Overall survival after reduced-intensity conditioning (RIC) allogeneic hematopoietic cell transplantation (HCT) using alemtuzumab, fludarabine, and melphalan is associated with high rates of mixed chimerism (MC) and secondary graft failure (GF). We hypothesized that peritransplantation alemtuzumab levels or specific patterns of inflammation would predict these risks. We assessed samples from the Bone Marrow Transplant Clinical Trials Network 1204 (NCT01998633) to study the impact of alemtuzumab levels and cytokine patterns on MC and impending or established secondary GF (defined as donor chimerism <5% after initial engraftment and/or requirement of cellular intervention). Thirty-three patients with hemophagocytic lymphohistiocytosis (n = 25) and other IEIs (n = 8) who underwent HCTs with T-cell-replete grafts were included. Patients with day 0 alemtuzumab levels ≤0.32 µg/mL had a markedly lower incidence of MC, 14.3%, vs 90.9% in patients with levels >0.32 µg/mL (P = .008). Impending or established secondary GF was only observed in patients with day 0 alemtuzumab levels >0.32 µg/mL (P = .08). Unexpectedly, patients with impending or established secondary GF had lower CXCL9 levels. The cumulative incidence of impending or established secondary GF in patients with a day 14+ CXCL9 level ≤2394 pg/mL (day 14+ median) was 73.6% vs 0% in patients with a level >2394 pg/mL (P = .002). CXCL9 levels inversely correlated with alemtuzumab levels. These data suggest a model in which higher levels of alemtuzumab at day 0 deplete donor T cells, inhibit the graft-versus-marrow reaction (thereby suppressing CXCL9 levels), and adversely affect sustained engraftment in the nonmyeloablative HCT setting. This trial was registered at www.clinicaltrials.gov as #NCT01998633.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Trasplante de Células Madre Hematopoyéticas , Humanos , Alemtuzumab/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Melfalán/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Donantes de Tejidos , Quimiocina CXCL9
10.
Pediatr Hematol Oncol ; 40(5): 497-505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36625721

RESUMEN

Patients with Langerhans cell histiocytosis (LCH) have been effectively treated with intravenous cytarabine. Intravenous or subcutaneous cytarabine infusions have been effective for leukemia patients, and pharmacokinetic studies have shown very similar blood levels of the drug with either route. We present three LCH patients treated with subcutaneous cytarabine either because intravenous access could not be maintained or due to patient refusal. One patient with pulmonary and skin LCH had a complete response. Another patient had a partial response of pulmonary and cutaneous lesions, but progressive bone disease. The third patient was treated for LCH-related cerebellar changes eight years after the diagnosis of isolated diabetes insipidus, with stable brain MRI for 5 years post-treatment. Subcutaneous cytarabine administration provides an alternative for patients with LCH in whom vascular access is not possible or practical, such as in some resource-limited circumstances.


Asunto(s)
Histiocitosis de Células de Langerhans , Neoplasias Cutáneas , Humanos , Citarabina/uso terapéutico , Histiocitosis de Células de Langerhans/diagnóstico por imagen , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Inducción de Remisión , Imagen por Resonancia Magnética
12.
Pediatr Blood Cancer ; 69(11): e29859, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35713195

RESUMEN

BACKGROUND: The association of childhood cancer with Lynch syndrome is not established compared with the significant pediatric cancer risk in recessive constitutional mismatch repair deficiency syndrome (CMMRD). PROCEDURE: We describe the clinical features, germline analysis, and tumor genomic profiling of patients with Lynch syndrome among patients enrolled in pediatric cancer genomic studies. RESULTS: There were six of 773 (0.8%) pediatric patients with solid tumors identified with Lynch syndrome, defined as a germline heterozygous pathogenic variant in one of the mismatch repair (MMR) genes (three with MSH6, two with MLH1, and one with MSH2). Tumor analysis demonstrated evidence for somatic second hits and/or increased tumor mutation burden in three of four patients with available tumor with potential implications for therapy and identification of at-risk family members. Only one patient met current guidelines for pediatric cancer genetics evaluation at the time of tumor diagnosis. CONCLUSION: Approximately 1% of children with cancer have Lynch syndrome, which is missed with current referral guidelines, suggesting the importance of adding MMR genes to tumor and hereditary pediatric cancer panels. Tumor analysis may provide the first suggestion of an underlying cancer predisposition syndrome and is useful in distinguishing between Lynch syndrome and CMMRD.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Encefálicas , Niño , Neoplasias Colorrectales , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal , Humanos , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Síndromes Neoplásicos Hereditarios
13.
Blood ; 139(17): 2601-2621, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35271698

RESUMEN

Langerhans cell histiocytosis (LCH) can affect children and adults with a wide variety of clinical manifestations, including unifocal, single-system multifocal, single-system pulmonary (smoking-associated), or multisystem disease. The existing paradigms in the management of LCH in adults are mostly derived from the pediatric literature. Over the last decade, the discovery of clonality and MAPK-ERK pathway mutations in most cases led to the recognition of LCH as a hematopoietic neoplasm, opening the doors for treatment with targeted therapies. These advances have necessitated an update of the existing recommendations for the diagnosis and treatment of LCH in adults. This document presents consensus recommendations that resulted from the discussions at the annual Histiocyte Society meeting in 2019, encompassing clinical features, classification, diagnostic criteria, treatment algorithm, and response assessment for adults with LCH. The recommendations favor the use of 18F-Fluorodeoxyglucose positron emission tomography-based imaging for staging and response assessment in the majority of cases. Most adults with unifocal disease may be cured by local therapies, while the first-line treatment for single-system pulmonary LCH remains smoking cessation. Among patients not amenable or unresponsive to these treatments and/or have multifocal and multisystem disease, systemic treatments are recommended. Preferred systemic treatments in adults with LCH include cladribine or cytarabine, with the emerging role of targeted (BRAF and MEK inhibitor) therapies. Despite documented responses to treatments, many patients struggle with a high symptom burden from pain, fatigue, and mood disorders that should be acknowledged and managed appropriately.


Asunto(s)
Histiocitosis de Células de Langerhans , Adulto , Niño , Cladribina/uso terapéutico , Consenso , Histiocitosis de Células de Langerhans/diagnóstico , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/terapia , Humanos , Sistema de Señalización de MAP Quinasas , Mutación
14.
J Allergy Clin Immunol ; 149(2): 758-766, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34329649

RESUMEN

BACKGROUND: Pediatric nonmalignant lymphoproliferative disorders (PLPDs) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. OBJECTIVE: The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. METHODS: PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant Epstein-Barr virus (EBV) infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing. RESULTS: Whole exome sequencing identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, P = .03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs 90%; P = .002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. CONCLUSIONS: PLPD defines children at high risk for mortality, and whole exome sequencing informs clinical risks and therapeutic opportunities for this diagnosis.


Asunto(s)
Trastornos Linfoproliferativos/genética , Adolescente , Autoinmunidad , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Inmunidad/genética , Lactante , Trastornos Linfoproliferativos/etiología , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/mortalidad , Masculino , Secuenciación del Exoma , Adulto Joven
16.
Nat Rev Dis Primers ; 7(1): 73, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620874

RESUMEN

The historic term 'histiocytosis' meaning 'tissue cell' is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim-Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. 'Inflammatory myeloproliferative neoplasm' may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.


Asunto(s)
Enfermedad de Erdheim-Chester , Histiocitosis de Células de Langerhans , Histiocitosis Sinusal , Xantogranuloma Juvenil , Enfermedad de Erdheim-Chester/diagnóstico , Enfermedad de Erdheim-Chester/genética , Histiocitosis de Células de Langerhans/diagnóstico , Humanos , Inflamación
17.
Blood Adv ; 5(17): 3457-3467, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34461635

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is a syndrome characterized by pathologic immune activation in which prompt recognition and initiation of immune suppression is essential for survival. Children with HLH have many overlapping clinical features with critically ill children with sepsis and systemic inflammatory response syndrome (SIRS) in whom alternative therapies are indicated. To determine whether plasma biomarkers could differentiate HLH from other inflammatory conditions and to better define a core inflammatory signature of HLH, concentrations of inflammatory plasma proteins were compared in 40 patients with HLH to 47 pediatric patients with severe sepsis or SIRS. Fifteen of 135 analytes were significantly different in HLH plasma compared with SIRS/sepsis, including increased interferon-γ (IFN-γ)-regulated chemokines CXCL9, CXCL10, and CXCL11. Furthermore, a 2-analyte plasma protein classifier including CXCL9 and interleukin-6 was able to differentiate HLH from SIRS/sepsis. Gene expression in CD8+ T cells and activated monocytes from blood were also enriched for IFN-γ pathway signatures in peripheral blood cells from patients with HLH compared with SIRS/sepsis. This study identifies differential expression of inflammatory proteins as a diagnostic strategy to identify critically ill children with HLH, and comprehensive unbiased analysis of inflammatory plasma proteins and global gene expression demonstrates that IFN-γ signaling is uniquely elevated in HLH. In addition to demonstrating the ability of diagnostic criteria for HLH and sepsis or SIRS to identify groups with distinct inflammatory patterns, results from this study support the potential for prospective evaluation of inflammatory biomarkers to aid in diagnosis of and optimizing therapeutic strategies for children with distinctive hyperinflammatory syndromes.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Sepsis , Niño , Diagnóstico Diferencial , Humanos , Interferón gamma , Linfohistiocitosis Hemofagocítica/diagnóstico , Proteoma , Sepsis/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico
18.
Nat Med ; 27(5): 851-861, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958797

RESUMEN

Langerhans cell histiocytosis (LCH) is a potentially fatal condition characterized by granulomatous lesions with characteristic clonal mononuclear phagocytes (MNPs) harboring activating somatic mutations in mitogen-activated protein kinase (MAPK) pathway genes, most notably BRAFV600E. We recently discovered that the BRAFV600E mutation can also affect multipotent hematopoietic progenitor cells (HPCs) in multisystem LCH disease. How the BRAFV600E mutation in HPCs leads to LCH is not known. Here we show that enforced expression of the BRAFV600E mutation in early mouse and human multipotent HPCs induced a senescence program that led to HPC growth arrest, apoptosis resistance and a senescence-associated secretory phenotype (SASP). SASP, in turn, promoted HPC skewing toward the MNP lineage, leading to the accumulation of senescent MNPs in tissue and the formation of LCH lesions. Accordingly, elimination of senescent cells using INK-ATTAC transgenic mice, as well as pharmacologic blockade of SASP, improved LCH disease in mice. These results identify senescent cells as a new target for the treatment of LCH.


Asunto(s)
Senescencia Celular/genética , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/patología , Células de Langerhans/patología , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Senescencia Celular/efectos de los fármacos , Citocinas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
19.
Clin Perinatol ; 48(1): 167-179, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33583503

RESUMEN

Langerhans cell histiocytosis, Rosai-Dorfman disease, and juvenile xanthogranuloma may present at birth or any time afterward. Some patients have minimal skin or lymph node involvement, but others present with life-threatening pulmonary, hepatic, bone marrow, or central nervous system lesions. There is often a delay in diagnosis because of confusing overlap with more common neonatal diseases. Many treatment regimens have been applied to these diseases, but those directed at myeloid cells, such as cytarabine and clofarabine or mutation-targeting inhibitors, are gaining favor. This article provides information on the pathophysiology, clinical presentation, evaluation guidelines, and treatment of these uncommon tumors of neonates.


Asunto(s)
Histiocitosis de Células de Langerhans , Histiocitosis Sinusal , Xantogranuloma Juvenil , Histiocitosis de Células de Langerhans/diagnóstico , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Histiocitosis Sinusal/diagnóstico , Histiocitosis Sinusal/tratamiento farmacológico , Humanos , Mutación , Piel , Xantogranuloma Juvenil/diagnóstico , Xantogranuloma Juvenil/tratamiento farmacológico
20.
Blood ; 137(13): 1777-1791, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075814

RESUMEN

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia characterized by granulomatous lesions containing pathological CD207+ dendritic cells (DCs) with persistent MAPK pathway activation. Standard-of-care chemotherapies are inadequate for most patients with multisystem disease, and optimal strategies for relapsed and refractory disease are not defined. The mechanisms underlying development of inflammation in LCH lesions, the role of inflammation in pathogenesis, and the potential for immunotherapy are unknown. Analysis of the immune infiltrate in LCH lesions identified the most prominent immune cells as T lymphocytes. Both CD8+ and CD4+ T cells exhibited "exhausted" phenotypes with high expression of the immune checkpoint receptors. LCH DCs showed robust expression of ligands to checkpoint receptors. Intralesional CD8+ T cells showed blunted expression of Tc1/Tc2 cytokines and impaired effector function. In contrast, intralesional regulatory T cells demonstrated intact suppressive activity. Treatment of BRAFV600ECD11c LCH mice with anti-PD-1 or MAPK inhibitor reduced lesion size, but with distinct responses. Whereas MAPK inhibitor treatment resulted in reduction of the myeloid compartment, anti-PD-1 treatment was associated with reduction in the lymphoid compartment. Notably, combined treatment with MAPK inhibitor and anti-PD-1 significantly decreased both CD8+ T cells and myeloid LCH cells in a synergistic fashion. These results are consistent with a model that MAPK hyperactivation in myeloid LCH cells drives recruitment of functionally exhausted T cells within the LCH microenvironment, and they highlight combined MAPK and checkpoint inhibition as a potential therapeutic strategy.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Histiocitosis de Células de Langerhans/patología , Humanos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...