Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
EMBO J ; 42(10): e111587, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37063065

RESUMEN

Cancer cells display persistent underlying chromosomal instability, with individual tumour types intriguingly exhibiting characteristic subsets of whole, and subchromosomal aneuploidies. Few methods to induce specific aneuploidies will exist, hampering investigation of functional consequences of recurrent aneuploidies, as well as the acute consequences of specific chromosome mis-segregation. We therefore investigated the possibility of sabotaging the mitotic segregation of specific chromosomes using nuclease-dead CRISPR-Cas9 (dCas9) as a cargo carrier to specific genomic loci. We recruited the kinetochore-nucleating domain of centromere protein CENP-T to assemble ectopic kinetochores either near the centromere of chromosome 9, or the telomere of chromosome 1. Ectopic kinetochore assembly led to increased chromosome instability and partial aneuploidy of the target chromosomes, providing the potential to induce specific chromosome mis-segregation events in a range of cell types. We also provide an analysis of putative endogenous repeats that could support ectopic kinetochore formation. Overall, our findings provide new insights into ectopic kinetochore biology and represent an important step towards investigating the role of specific aneuploidy and chromosome mis-segregation events in diseases associated with aneuploidy.


Asunto(s)
Proteínas Cromosómicas no Histona , Cinetocoros , Humanos , Cinetocoros/metabolismo , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Centrómero/genética , Centrómero/metabolismo , Aneuploidia , Segregación Cromosómica
3.
Genome Biol ; 23(1): 223, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266663

RESUMEN

BACKGROUND: A major driver of cancer chromosomal instability is replication stress, the slowing or stalling of DNA replication. How replication stress and genomic instability are connected is not known. Aphidicolin-induced replication stress induces breakages at common fragile sites, but the exact causes of fragility are debated, and acute genomic consequences of replication stress are not fully explored. RESULTS: We characterize DNA copy number alterations (CNAs) in single, diploid non-transformed cells, caused by one cell cycle in the presence of either aphidicolin or hydroxyurea. Multiple types of CNAs are generated, associated with different genomic regions and features, and observed copy number landscapes are distinct between aphidicolin and hydroxyurea-induced replication stress. Coupling cell type-specific analysis of CNAs to gene expression and single-cell replication timing analyses pinpointed the causative large genes of the most recurrent chromosome-scale CNAs in aphidicolin. These are clustered on chromosome 7 in RPE1 epithelial cells but chromosome 1 in BJ fibroblasts. Chromosome arm level CNAs also generate acentric lagging chromatin and micronuclei containing these chromosomes. CONCLUSIONS: Chromosomal instability driven by replication stress occurs via focal CNAs and chromosome arm scale changes, with the latter confined to a very small subset of chromosome regions, potentially heavily skewing cancer genome evolution. Different inducers of replication stress lead to distinctive CNA landscapes providing the opportunity to derive copy number signatures of specific replication stress mechanisms. Single-cell CNA analysis thus reveals the impact of replication stress on the genome, providing insights into the molecular mechanisms which fuel chromosomal instability in cancer.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Afidicolina/farmacología , Hidroxiurea/farmacología , Neoplasias/genética , ADN , Inestabilidad Cromosómica , Cromosomas , Cromatina
4.
Int J Biochem Cell Biol ; 152: 106300, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36189461

RESUMEN

Within most tumour types, cancerous cells exist in a state of aneuploidy, an incorrect chromosome number or structure. Additionally, tumour cells frequently exhibit chromosomal instability; the ongoing loss or gain of whole or parts of chromosomes during cell division. Chromosomal instability results in a high rate of chromosome segregation defects, and a constantly changing genomic landscape. A second consequence of recurrent chromosome segregation defects is the exclusion of mis-segregated chromatin from the newly reforming nucleus. Chromosomes, or chromosome fragments that are not incorporated into the main nucleus are often packaged into extranuclear structures called micronuclei. While the initial impact of micronucleus formation is an imbalance or loss of genetic material in the resulting daughter cells, several other downstream consequences are now known to result from this process. In this review, we discuss the further consequences of micronucleus formation, including how structural changes to the micronuclear envelope, and the rupturing of micronuclear membranes can contribute to metastasis, immune cell activation and overall, tumour progression.


Asunto(s)
Núcleo Celular , Neoplasias , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , División Celular , Inestabilidad Cromosómica , Neoplasias/patología
5.
EMBO J ; 41(6): e110764, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35156716

RESUMEN

Inhibition of cyclin-dependent kinases Cdk4/6 is emerging as a useful anti-proliferative chemotherapy, but it remains unclear how durable inhibition of cancer cell proliferation is achieved to promote a long-lasting response in patients, or how toxicity is limited to cancer cells with minimal side effects. Two recent papers in The EMBO Journal investigating senescence induction following prolonged Cdk4/6 inhibitor treatment now reveal important insights into ways to increase anti-tumour effects of Cdk4/6 inhibition and to reduce therapy-induced side effects of senescence induction.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Humanos
6.
Dev Cell ; 56(17): 2399-2400, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34520761

RESUMEN

In this issue of Developmental Cell, papers from Ippolito et al. and from Lukow et al. show that increasing the range of aneuploidy states in cells increases their chance of developing resistance when they are subjected to chemotherapy.


Asunto(s)
Aneuploidia , Cromosomas , Humanos
7.
Trends Genet ; 37(8): 691-694, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34083067

RESUMEN

Cancer research has recently benefitted from the integration of evolutionary theory to study somatic genome evolution during tumor development. Here, we explore how investigating mechanistic principles of chromosomal instability during both species and somatic evolution can reciprocally inform each field.


Asunto(s)
Envejecimiento/genética , Inestabilidad Cromosómica/genética , Evolución Clonal/genética , Envejecimiento/patología , Humanos , Neoplasias/genética
8.
Cancer Res ; 80(22): 4946-4959, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32998996

RESUMEN

Chromosomal instability (CIN) comprises continual gain and loss of chromosomes or parts of chromosomes and occurs in the majority of cancers, often conferring poor prognosis. Because of a scarcity of functional studies and poor understanding of how genetic or gene expression landscapes connect to specific CIN mechanisms, causes of CIN in most cancer types remain unknown. High-grade serous ovarian carcinoma (HGSC), the most common subtype of ovarian cancer, is the major cause of death due to gynecologic malignancy in the Western world, with chemotherapy resistance developing in almost all patients. HGSC exhibits high rates of chromosomal aberrations and knowledge of causative mechanisms would represent an important step toward combating this disease. Here we perform the first in-depth functional characterization of mechanisms driving CIN in HGSC in seven cell lines that accurately recapitulate HGSC genetics. Multiple mechanisms coexisted to drive CIN in HGSC, including elevated microtubule dynamics and DNA replication stress that can be partially rescued to reduce CIN by low doses of paclitaxel and nucleoside supplementation, respectively. Distinct CIN mechanisms indicated relationships with HGSC-relevant therapy including PARP inhibition and microtubule-targeting agents. Comprehensive genomic and transcriptomic profiling revealed deregulation of various genes involved in genome stability but were not directly predictive of specific CIN mechanisms, underscoring the importance of functional characterization to identify causes of CIN. Overall, we show that HGSC CIN is complex and suggest that specific CIN mechanisms could be used as functional biomarkers to indicate appropriate therapy. SIGNIFICANCE: These findings characterize multiple deregulated mechanisms of genome stability that lead to CIN in ovarian cancer and demonstrate the benefit of integrating analysis of said mechanisms into predictions of therapy response.


Asunto(s)
Inestabilidad Cromosómica , Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/genética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Inestabilidad Cromosómica/fisiología , Segregación Cromosómica , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Variaciones en el Número de Copia de ADN , Daño del ADN , Replicación del ADN/fisiología , Femenino , Inestabilidad Genómica , Humanos , Microtúbulos/fisiología , Clasificación del Tumor , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
9.
Nature ; 583(7815): 207-209, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32620881
10.
EMBO Rep ; 21(5): e50322, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32346980

RESUMEN

The natural progressive dysfunction of most living organisms-ageing-has captured the attention of several studies, with the intention to develop rejuvenation strategies. Evidence is emerging of a positive correlation between natural ageing and chromosomal instability (CIN). In this issue of EMBO Reports, Barroso-Vilares et al [1] now show a link between ageing and the erroneous assembly of the apparatus required for a proper cellular division. They compare this mechanism in young and naturally aged human cells and describe a strategy to delay age-related CIN.


Asunto(s)
Segregación Cromosómica , Neoplasias , Envejecimiento/genética , Senescencia Celular/genética , Inestabilidad Cromosómica , Humanos
11.
EMBO J ; 39(2): e102924, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31750958

RESUMEN

Intrinsic genomic features of individual chromosomes can contribute to chromosome-specific aneuploidy. Centromeres are key elements for the maintenance of chromosome segregation fidelity via a specialized chromatin marked by CENP-A wrapped by repetitive DNA. These long stretches of repetitive DNA vary in length among human chromosomes. Using CENP-A genetic inactivation in human cells, we directly interrogate if differences in the centromere length reflect the heterogeneity of centromeric DNA-dependent features and whether this, in turn, affects the genesis of chromosome-specific aneuploidy. Using three distinct approaches, we show that mis-segregation rates vary among different chromosomes under conditions that compromise centromere function. Whole-genome sequencing and centromere mapping combined with cytogenetic analysis, small molecule inhibitors, and genetic manipulation revealed that inter-chromosomal heterogeneity of centromeric features, but not centromere length, influences chromosome segregation fidelity. We conclude that faithful chromosome segregation for most of human chromosomes is biased in favor of centromeres with high abundance of DNA-dependent centromeric components. These inter-chromosomal differences in centromere features can translate into non-random aneuploidy, a hallmark of cancer and genetic diseases.


Asunto(s)
Aneuploidia , Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , Cromosomas Humanos/genética , ADN/metabolismo , Células Cultivadas , Centrómero/genética , Proteína A Centromérica/genética , Cromatina/genética , Segregación Cromosómica , ADN/genética , Femenino , Humanos , Masculino
13.
Essays Biochem ; 63(2): 209-216, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31092688

RESUMEN

Mammalian genomes are ordered at several scales, ranging from nucleosomes (beads on a string), to topologically associated domains (TADs), laminar associated domains (LADs), and chromosome territories. These are described briefly below and we refer the reader to some recent comprehensive reviews on genome architecture summarising the current state of knowledge of the organisational principles of the nucleus [1,2]. Biological observations from populations of millions of individual cells can reveal consensus behaviour. New methods to study and interpret biological data at the single-cell level have recently been instrumental in revealing new understanding of cell-to-cell variation and novel biology. Here we will summarise the recent advances in single-cell technology that have provided insights into the behaviour of the mammalian genome during a cell cycle. We will focus on the interphase domain structure of chromosomes, including TADs and LADs, and how chromosome architecture changes during the cell cycle. The role of genome architecture relating to gene expression has been reviewed elsewhere [3].


Asunto(s)
Ciclo Celular/genética , Núcleo Celular/genética , Cromosomas de los Mamíferos/genética , Mamíferos/genética , Análisis de la Célula Individual/métodos , Animales , Genoma
14.
Mol Cytogenet ; 12: 17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114634

RESUMEN

Many cancers possess an incorrect number of chromosomes, a state described as aneuploidy. Aneuploidy is often caused by Chromosomal Instability (CIN), a process of continuous chromosome mis-segregation. CIN is believed to endow tumours with enhanced evolutionary capabilities due to increased intratumour heterogeneity, and facilitating adaptive resistance to therapies. Recently, however, additional consequences and associations with CIN have been revealed, prompting the need to understand this universal hallmark of cancer in a multifaceted context. This review is focused on the investigation of possible links between CIN, metastasis and the host immune system in cancer development and treatment. We specifically focus on these links since most cancer deaths are due to the consequences of metastasis, and immunotherapy is a rapidly expanding novel avenue of cancer therapy.

15.
Biomolecules ; 9(2)2019 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-30691136

RESUMEN

It has recently emerged that human chromosomes vary between one another in terms of features that impact their behaviour during impaired chromosome segregation, leading to non-random aneuploidy in the daughter cell population. During the process of chromosome congression to the metaphase plate, chromosome movement is guided by kinesin-like proteins, among which centromere-associated protein E (CENP-E) is important to transport chromosomes along the microtubules of the mitotic spindle. It is known that the inhibition of CENP-E notably impairs alignment for a subset of chromosomes, particularly those positioned close to the centrosome at nuclear envelope breakdown ('polar chromosomes'); it is, however, not clear whether chromosome identity could influence this process. Since a popular strategy to model aneuploidy is to induce congression defects (for example combining CENP-E inhibitors with mitotic checkpoint abrogation), variance in congression efficiency between chromosomes might influence the landscape of aneuploidy and subsequent cell fates. By combining immunofluorescence, live cell imaging and fluorescence in situ hybridisation, we investigated the behaviour of polar chromosomes and their dependency upon CENP-E-mediated congression in human cells. We observed a bias in congression efficiency related to chromosome size, with larger chromosomes more sensitive to CENP-E inhibition. This bias is likely due to two contributing factors; an initial propensity of larger chromosomes to be peripheral and thus rely more upon CENP-E function to migrate to the metaphase plate, and additionally a bias between specific chromosomes' ability to congress from a polar state. These findings may help to explain the persistence of a subset of chromosomes at the centrosome following CENP-E disruption, and also have implications for the spectrum of aneuploidy generated following treatments to manipulate CENP-E function.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Aberraciones Cromosómicas/efectos de los fármacos , Cromosomas/efectos de los fármacos , Humanos , Sarcosina/análogos & derivados , Sarcosina/farmacología
16.
Endocr Relat Cancer ; 24(9): T23-T31, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28696210

RESUMEN

Cancer cells often display chromosomal instability (CIN), a defect that involves loss or rearrangement of the cell's genetic material - chromosomes - during cell division. This process results in the generation of aneuploidy, a deviation from the haploid number of chromosomes, and structural alterations of chromosomes in over 90% of solid tumours and many haematological cancers. This trait is unique to cancer cells as normal cells in the body generally strictly maintain the correct number and structure of chromosomes. This key difference between cancer and normal cells has led to two important hypotheses: (i) cancer cells have had to overcome inherent barriers to changes in chromosomes that are not tolerated in non-cancer cells and (ii) CIN represents a cancer-specific target to allow the specific elimination of cancer cells from the body. To exploit these hypotheses and design novel approaches to treat cancer, a full understanding of the mechanisms driving CIN and how CIN contributes to cancer progression is required. Here, we will discuss the possible mechanisms driving chromosomal instability, how CIN may contribute to the progression at multiple stages of tumour evolution and possible future therapeutic directions based on targeting cancer chromosomal instability.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias/genética , Animales , Humanos
17.
Curr Biol ; 24(4): R150, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24556434
18.
Nature ; 494(7438): 492-496, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23446422

RESUMEN

Cancer chromosomal instability (CIN) results in an increased rate of change of chromosome number and structure and generates intratumour heterogeneity. CIN is observed in most solid tumours and is associated with both poor prognosis and drug resistance. Understanding a mechanistic basis for CIN is therefore paramount. Here we find evidence for impaired replication fork progression and increased DNA replication stress in CIN(+) colorectal cancer (CRC) cells relative to CIN(-) CRC cells, with structural chromosome abnormalities precipitating chromosome missegregation in mitosis. We identify three new CIN-suppressor genes (PIGN (also known as MCD4), MEX3C (RKHD2) and ZNF516 (KIAA0222)) encoded on chromosome 18q that are subject to frequent copy number loss in CIN(+) CRC. Chromosome 18q loss was temporally associated with aneuploidy onset at the adenoma-carcinoma transition. CIN-suppressor gene silencing leads to DNA replication stress, structural chromosome abnormalities and chromosome missegregation. Supplementing cells with nucleosides, to alleviate replication-associated damage, reduces the frequency of chromosome segregation errors after CIN-suppressor gene silencing, and attenuates segregation errors and DNA damage in CIN(+) cells. These data implicate a central role for replication stress in the generation of structural and numerical CIN, which may inform new therapeutic approaches to limit intratumour heterogeneity.


Asunto(s)
Inestabilidad Cromosómica/genética , Neoplasias Colorrectales/genética , Replicación del ADN/genética , Aneuploidia , Línea Celular Tumoral , Inestabilidad Cromosómica/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , Cromosomas Humanos Par 18/efectos de los fármacos , Cromosomas Humanos Par 18/genética , Neoplasias Colorrectales/patología , Variaciones en el Número de Copia de ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Replicación del ADN/efectos de los fármacos , Eliminación de Gen , Silenciador del Gen , Genes Supresores de Tumor , Humanos , Mitosis/efectos de los fármacos , Nucleósidos/farmacología , Fosfotransferasas/genética , Proteínas de Unión al ARN/genética
19.
Cancer Res ; 71(10): 3447-52, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21270108

RESUMEN

Chromosomal instability (CIN) is associated with poor prognosis in human cancer. However, in certain animal tumor models elevated CIN negatively impacts upon organism fitness, and is poorly tolerated by cancer cells. To better understand this seemingly contradictory relationship between CIN and cancer cell biological fitness and its relationship with clinical outcome, we applied the CIN70 expression signature, which correlates with DNA-based measures of structural chromosomal complexity and numerical CIN in vivo, to gene expression profiles of 2,125 breast tumors from 13 published cohorts. Tumors with extreme CIN, defined as the highest quartile CIN70 score, were predominantly of the estrogen receptor negative (ER(-)), basal-like phenotype and displayed the highest chromosomal structural complexity and chromosomal numerical instability. We found that the extreme CIN/ER(-) tumors were associated with improved prognosis relative to tumors with intermediate CIN70 scores in the third quartile. We also observed this paradoxical relationship between CIN and prognosis in ovarian, gastric, and non-small cell lung cancer, with poorest outcome in tumors with intermediate, rather than extreme, CIN70 scores. These results suggest a nonmonotonic relationship between gene signature expression and HR for survival outcome, which may explain the difficulties encountered in the identification of prognostic expression signatures in ER(-) breast cancer. Furthermore, the data are consistent with the intolerance of excessive CIN in carcinomas and provide a plausible strategy to define distinct prognostic patient cohorts with ER(-) breast cancer. Inclusion of a surrogate measurement of CIN may improve cancer risk stratification and future therapeutic approaches.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias de la Mama/genética , Línea Celular Tumoral , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Pronóstico , Receptores de Estrógenos/genética , Neoplasias Gástricas/genética , Resultado del Tratamiento
20.
J Cell Biol ; 188(5): 665-79, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20212316

RESUMEN

During mitosis in most eukaryotic cells, chromosomes align and form a metaphase plate halfway between the spindle poles, about which they exhibit oscillatory movement. These movements are accompanied by changes in the distance between sister kinetochores, commonly referred to as breathing. We developed a live cell imaging assay combined with computational image analysis to quantify the properties and dynamics of sister kinetochores in three dimensions. We show that baseline oscillation and breathing speeds in late prometaphase and metaphase are set by microtubule depolymerases, whereas oscillation and breathing periods depend on the stiffness of the mechanical linkage between sisters. Metaphase plates become thinner as cells progress toward anaphase as a result of reduced oscillation speed at a relatively constant oscillation period. The progressive slowdown of oscillation speed and its coupling to plate thickness depend nonlinearly on the stiffness of the mechanical linkage between sisters. We propose that metaphase plate formation and thinning require tight control of the state of the mechanical linkage between sisters mediated by centromeric chromatin and cohesion.


Asunto(s)
Centrómero/metabolismo , Cinetocoros/metabolismo , Metafase/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Bioensayo/métodos , Centrómero/química , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Elasticidad , Células HeLa , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Periodicidad , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...