Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 41(3): 111493, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36261024

RESUMEN

Cells sense stress and initiate response pathways to maintain lipid and protein homeostasis. However, the interplay between these adaptive mechanisms is unclear. Herein, we demonstrate how imbalances in cytosolic protein homeostasis affect intracellular lipid surveillance. Independent of its ancient thermo-protective properties, the heat shock factor, HSF-1, modulates lipid metabolism and age regulation through the metazoan-specific nuclear hormone receptor, NHR-49. Reduced hsf-1 expression destabilizes the Caenorhabditis elegans enteric actin network, subsequently disrupting Rab GTPase-mediated trafficking and cell-surface residency of nutrient transporters. The ensuing malabsorption limits lipid availability, thereby activating the intracellular lipid surveillance response through vesicular release and nuclear translocation of NHR-49 to both increase nutrient absorption and restore lipid homeostasis. Overall, cooperation between these regulators of cytosolic protein homeostasis and lipid surveillance ensures metabolic health and age progression through actin integrity, endocytic recycling, and lipid sensing.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Caenorhabditis elegans/metabolismo , Respuesta al Choque Térmico , Factores de Transcripción/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Lípidos , Proteínas de Unión al GTP rab/metabolismo
2.
Aging Cell ; 21(9): e13693, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35977034

RESUMEN

Aging is a complex and highly regulated process of interwoven signaling mechanisms. As an ancient transcriptional regulator of thermal adaptation and protein homeostasis, the Heat Shock Factor, HSF-1, has evolved functions within the nervous system to control age progression; however, the molecular details and signaling dynamics by which HSF-1 modulates age across tissues remain unclear. Herein, we report a nonautonomous mode of age regulation by HSF-1 in the Caenorhabditis elegans nervous system that works through the bone morphogenic protein, BMP, signaling pathway to modulate membrane trafficking in peripheral tissues. In particular, HSF-1 represses the expression of the neuron-specific BMP ligand, DBL-1, and initiates a complementary negative feedback loop within the intestine. By reducing receipt of DBL-1 in the periphery, the SMAD transcriptional coactivator, SMA-3, represses the expression of critical membrane trafficking regulators including Rab GTPases involved in early (RAB-5), late (RAB-7), and recycling (RAB-11.1) endosomal dynamics and the BMP receptor binding protein, SMA-10. This reduces cell surface residency and steady-state levels of the type I BMP receptor, SMA-6, in the intestine and further dampens signal transmission to the periphery. Thus, the ability of HSF-1 to coordinate BMP signaling along the gut-brain axis is an important determinate in age progression.


Asunto(s)
Proteínas de Caenorhabditis elegans , Longevidad , Animales , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Respuesta al Choque Térmico , Longevidad/fisiología , Neuronas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Commun ; 12(1): 1484, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674585

RESUMEN

Mechanical stimuli initiate adaptive signal transduction pathways, yet exceeding the cellular capacity to withstand physical stress results in death. The molecular mechanisms underlying trauma-induced degeneration remain unclear. In the nematode C. elegans, we have developed a method to study cellular degeneration in response to mechanical stress caused by blunt force trauma. Herein, we report that physical injury activates the c-Jun kinase, KGB-1, which modulates response elements through the AP-1 transcriptional complex. Among these, we have identified a dual-specificity MAPK phosphatase, VHP-1, as a stress-inducible modulator of neurodegeneration. VHP-1 regulates the transcriptional response to mechanical stress and is itself attenuated by KGB-1-mediated inactivation of a deubiquitinase, MATH-33, and proteasomal degradation. Together, we describe an uncharacterized stress response pathway in C. elegans and identify transcriptional and post-translational components comprising a feedback loop on Jun kinase and phosphatase activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Fosfatasas de Especificidad Dual/metabolismo , Estrés Mecánico , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fosfatasas de Especificidad Dual/genética , Endopeptidasas/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Enfermedades Neurodegenerativas/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcriptoma
4.
Mol Cell ; 80(3): 452-469.e9, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33157015

RESUMEN

Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.


Asunto(s)
Proteínas de Unión al ARN/genética , Proteína p53 Supresora de Tumor/genética , Adenocarcinoma/genética , Empalme Alternativo , Animales , Proteínas de Ciclo Celular/metabolismo , Exones , Perfilación de la Expresión Génica/métodos , Genes Supresores de Tumor , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Endogámicos ICR , Ratones SCID , Interferencia de ARN , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
5.
Dev Cell ; 51(5): 587-601.e7, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794717

RESUMEN

Age-associated decay of intercellular interactions impairs the cells' capacity to tightly associate within tissues and form a functional barrier. This barrier dysfunction compromises organ physiology and contributes to systemic failure. The actin cytoskeleton represents a key determinant in maintaining tissue architecture. Yet, it is unclear how age disrupts the actin cytoskeleton and how this, in turn, promotes mortality. Here, we show that an uncharacterized phosphorylation of a low-abundant actin variant, ACT-5, compromises integrity of the C. elegans intestinal barrier and accelerates pathogenesis. Age-related loss of the heat-shock transcription factor, HSF-1, disrupts the JUN kinase and protein phosphatase I equilibrium which increases ACT-5 phosphorylation within its troponin binding site. Phosphorylated ACT-5 accelerates decay of the intestinal subapical terminal web and impairs its interactions with cell junctions. This compromises barrier integrity, promotes pathogenesis, and drives mortality. Thus, we provide the molecular mechanism by which age-associated loss of specialized actin networks impacts tissue integrity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Mucosa Intestinal/metabolismo , Actinas/química , Actinas/genética , Envejecimiento/patología , Animales , Sitios de Unión , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Uniones Intercelulares/metabolismo , Mucosa Intestinal/crecimiento & desarrollo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Factores de Transcripción/metabolismo , Troponina/metabolismo
6.
Dev Cell ; 50(2): 212-228.e6, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31178404

RESUMEN

Inappropriate activation of the p53 transcription factor contributes to numerous developmental syndromes characterized by distinct constellations of phenotypes. How p53 drives exquisitely specific sets of symptoms in diverse syndromes, however, remains enigmatic. Here, we deconvolute the basis of p53-driven developmental syndromes by leveraging an array of mouse strains to modulate the spatial expression pattern, temporal profile, and magnitude of p53 activation during embryogenesis. We demonstrate that inappropriate p53 activation in the neural crest, facial ectoderm, anterior heart field, and endothelium induces distinct spectra of phenotypes. Moreover, altering the timing and degree of p53 hyperactivation substantially affects the phenotypic outcomes. Phenotypes are associated with p53-driven cell-cycle arrest or apoptosis, depending on the cell type, with gene expression programs, rather than extent of mitochondrial priming, largely governing the specific response. Together, our findings provide a critical framework for decoding the role of p53 as a mediator of diverse developmental syndromes.


Asunto(s)
Embrión de Mamíferos/patología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Mitocondrias/patología , Cresta Neural/patología , Análisis Espacio-Temporal , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Puntos de Control del Ciclo Celular , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Cresta Neural/metabolismo , Fenotipo
7.
Ann Med Surg (Lond) ; 36: 129-134, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30455878

RESUMEN

AIM: To evaluate maternal, neonatal and anesthetic outcomes according to BMI in women undergoing cesarean section. BACKGROUND: Increased incidence rates of obesity and morbid obesity have been reported in the United States. Pregnant obese patients are at increased risk of maternal and fetal complications, and obstetric and anesthetic management of these patients is especially challenging. METHODS: A retrospective chart review of patients who underwent cesarean section in a single center between 2015 and 2016 was conducted. Anesthetic, obstetric and neonatal outcomes were analyzed in relation to levels of BMI. RESULTS: Seven hundred and seventy one patients underwent cesarean section during the study period. The number of patients with normal BMI, obesity and morbid obesity was 213 (27.6%), 365 (47.3%) and 193 (25%), respectively. Sixty-one percent of the patients in morbidly obese group had at least one comorbidity (p < 0.01). We found no significant differences with respect to perioperative obstetric complications. Intraoperative blood loss was significantly higher in the morbidly obese group. CONCLUSION: Increasing BMI is associated with comorbidities such as hypertension and diabetes mellitus, and with increased intraoperative blood loss. We were unable to detect differences in other obstetric, anesthetic and neonatal outcomes.

8.
Cancer Cell ; 32(4): 460-473.e6, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-29017057

RESUMEN

The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.


Asunto(s)
Proteínas Nucleares/fisiología , Neoplasias Pancreáticas/genética , Proteínas Tirosina Fosfatasas no Receptoras/fisiología , Factores de Transcripción/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Proteínas de Ciclo Celular , Proliferación Celular , Transformación Celular Neoplásica , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/prevención & control , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...