Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(14): 144303, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061485

RESUMEN

Time-resolved photoionization measurements were performed on o-nitrophenol pumped with UV laser pulses at a central wavelength of 255 nm (4.9 eV) and probed with vacuum ultraviolet (VUV) pulses at 153 nm (8.1 eV). The photoelectron spectrum and time of flight mass spectrum for ions were recorded at each pump-probe delay. The measurements are interpreted with the aid of electronic structure calculations for both the neutral and ionic states. Evidence is found for the formation of a bicyclic intermediate followed by NO dissociation through a process of internal conversion and intersystem crossing. The combination of photoelectron and photoion spectroscopy, together with computational results, provides strong evidence of intersystem crossing that is difficult to establish with only a single technique.

2.
J Phys Chem A ; 126(36): 6021-6031, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36069531

RESUMEN

Nonadiabatic excited state dynamics are important in a variety of processes. Theoretical and experimental developments have allowed for a great progress in this area, while combining the two is often necessary and the best approach to obtain insight into the photophysical behavior of molecules. In this Feature Article we use examples of our recent work combining time-resolved photoelectron spectroscopy with theoretical nonadiabatic dynamics to highlight important lessons we learned. We compare the nonadiabatic excited state dynamics of three different organic molecules with the aim of elucidating connections between structure and dynamics. Calculations and measurements are compared for uracil, 1,3-cyclooctadiene, and 1,3-cyclohexadiene. The comparison highlights the role of rigidity in influencing the dynamics and the difficulty of capturing the dynamics accurately with calculations.


Asunto(s)
Teoría Cuántica , Uracilo , Espectroscopía de Fotoelectrones , Uracilo/química
3.
J Phys Chem Lett ; 12(21): 5099-5104, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34028278

RESUMEN

We compare different levels of theory for simulating excited state molecular dynamics and use time-resolved photoelectron spectroscopy measurements to benchmark the theory. We perform trajectory surface hopping simulations for uracil excited to the first bright state (ππ*) using three different levels of theory (CASSCF, MRCIS, and XMS-CASPT2) in order to understand the role of dynamical correlation in determining the excited state dynamics, with a focus on the coupling between different electronic states and internal conversion back to the ground state. These dynamics calculations are used to simulate the time-resolved photoelectron spectra. The comparison of the calculated and measured spectra allows us to draw conclusions regarding the relative insights and quantitative accuracy of the calculations at the three different levels of theory, demonstrating that detailed quantitative comparisons of time-resolved photoelectron spectra can be used to benchmark methodology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA