Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
J Environ Manage ; 299: 113536, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34526281

RESUMEN

Habitat restoration is a key strategy for recovering imperiled species, and planning habitat restoration activities cost effectively can help advance recovery objectives. Habitat restoration planning involves decisions about where and when to undertake restoration, and what type of restoration to undertake. This article focuses on decisions about the amount of restoration to undertake for a given type, location, and time, termed intervention intensity. A return on investment framework is developed for incorporating intervention intensity into habitat restoration planning. The framework is then applied in the context of planning habitat restoration for Pacific salmon recovery as a case study. Results showed that no single intervention type or location dominated, and several returns to scale relationships emerged across the candidate interventions. Scenarios that considered interventions across multiple intensities outperformed single-intensity scenarios in terms of total benefits and cost effectiveness. These findings highlight the usefulness of exploratory return on investment analysis for prioritizing habitat restoration interventions, and underscore the importance of systematically considering how much restoration to undertake, in addition to what to do and where.


Asunto(s)
Conservación de los Recursos Naturales , Ríos , Animales , Ecosistema , Salmón
3.
Evol Appl ; 13(10): 2536-2554, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294007

RESUMEN

Delimiting intraspecific genetic variation in harvested species is crucial to the assessment of population status for natural resource management and conservation purposes. Here, we evaluated genetic population structure in lingcod (Ophiodon elongatus), a commercially and recreationally important fishery species along the west coast of North America. We used 16,749 restriction site-associated DNA sequencing (RADseq) markers, in 611 individuals collected from across the bulk of the species range from Southeast Alaska to Baja California, Mexico. In contrast to previous population genetic work on this species, we found strong evidence for two distinct genetic clusters. These groups separated latitudinally with a break near Point Reyes off Northern California, and there was a high frequency of admixed individuals in close proximity to the break. F-statistics corroborate this genetic break between northern and southern sampling sites, although most loci are characterized by low FST values, suggesting high gene flow throughout most of the genome. Outlier analyses identified 182 loci putatively under divergent selection, most of which mapped to a single genomic region. When individuals were grouped by cluster assignment (northern, southern, and admixed), 71 loci were fixed between the northern and southern cluster, all of which were identified in the outlier scans. All individuals identified as admixed exhibited near 50:50 assignment to northern and southern clusters and were heterozygous for most fixed loci. Alignments of RADseq loci to a draft lingcod genome assembly and three other teleost genomes with chromosome-level assemblies suggest that outlier and fixed loci are concentrated on a single chromosome. Similar genomic patterns have been attributed to chromosomal inversions in diverse taxonomic groups. Regardless of the evolutionary mechanism, these results represent novel observations of genetic structure in lingcod and designate clear evolutionary units that could be used to inform fisheries management.

5.
PLoS One ; 14(7): e0217711, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31339895

RESUMEN

Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Oncorhynchus mykiss/fisiología , Salmón/fisiología , Animales , California , Cambio Climático , Humanos , Oregon , Océano Pacífico , Estaciones del Año , Agua de Mar , Temperatura
6.
Glob Chang Biol ; 25(8): 2560-2575, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31058395

RESUMEN

Although climate-induced shifts in fish distribution have been widely reported at the population level, studies that account for ontogenetic shifts and subregional differences when assessing responses are rare.In this study, groundfish distributional changes in depth, latitude, and longitude were assessed at different size classes by species within nine subregions. We examined large, quality-controlled datasets of depth-stratified-random bottom trawl surveys conducted during summer in three large regions-the Gulf of Alaska and the west coasts of Canada and the United States-over the period 1996-2015, a time period punctuated by a marine "heat wave." Temporal biases in bottom temperature were minimized by subdividing each region into three subregions, each with short-duration surveys. Near-bottom temperatures, weighted by stratum area, were unsynchronized across subregions and exhibited varying subregional interannual variability. The weighted mean bottom depths in the subregions also vary largely among subregions. The centroids (centers of gravity) of groundfish distribution were weighted with catch per unit effort and stratum area for 10 commercially important groundfish species by size class and subregion. Our multivariate analyses showed that there were significant differences in aggregate fish movement responses to warm temperatures across subregions but not among species or sizes. Groundfish demonstrated poleward responses to warming temperatures only in a few subregions and moved shallower or deeper to seek colder waters. The temperature responses of groundfish depended on where they were. Under global warming, groundfish may form geographically distinct thermal ecoregions along the northeast Pacific shelf. Shallow-depth species exhibited greatly different distributional responses to temperature changes across subregions while deep-depth species of different subregions tend to have relatively similar temperature responses. Future climate studies would benefit by considering fish distributions on small subregional scales.


Asunto(s)
Peces , Alaska , Animales , Canadá , Humanos , Océanos y Mares , Temperatura
7.
Nat Commun ; 9(1): 2414, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925843

RESUMEN

Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Fetales/patología , Macaca mulatta , Enfermedades del Sistema Nervioso/patología , Complicaciones Infecciosas del Embarazo/patología , Infección por el Virus Zika/patología , Virus Zika/patogenicidad , Animales , Encéfalo/patología , Encéfalo/virología , Femenino , Enfermedades Fetales/virología , Feto/patología , Feto/virología , Humanos , Masculino , Enfermedades del Sistema Nervioso/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , ARN Viral/aislamiento & purificación , Virus Zika/genética , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/virología
8.
Am J Physiol Lung Cell Mol Physiol ; 311(4): L719-L733, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27474090

RESUMEN

Posttranslational modifications add diversity to protein function. Throughout its life cycle, the cystic fibrosis transmembrane conductance regulator (CFTR) undergoes numerous covalent posttranslational modifications (PTMs), including glycosylation, ubiquitination, sumoylation, phosphorylation, and palmitoylation. These modifications regulate key steps during protein biogenesis, such as protein folding, trafficking, stability, function, and association with protein partners and therefore may serve as targets for therapeutic manipulation. More generally, an improved understanding of molecular mechanisms that underlie CFTR PTMs may suggest novel treatment strategies for CF and perhaps other protein conformational diseases. This review provides a comprehensive summary of co- and posttranslational CFTR modifications and their significance with regard to protein biogenesis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Fibrosis Quística , Glicosilación , Humanos , Fosforilación , Estabilidad Proteica , Transporte de Proteínas
9.
Ecol Appl ; 25(2): 559-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26263675

RESUMEN

Climate change is likely to lead to increasing population variability and extinction risk. Theoretically, greater population diversity should buffer against rising climate variability, and this theory is often invoked as a reason for greater conservation. However, this has rarely been quantified. Here we show how a portfolio approach to managing population diversity can inform metapopulation conservation priorities in a changing world. We develop a salmon metapopulation model in which productivity is driven by spatially distributed thermal tolerance and patterns of short- and long-term climate change. We then implement spatial conservation scenarios that control population carrying capacities and evaluate the metapopulation portfolios as a financial manager might: along axes of conservation risk and return. We show that preserving a diversity of thermal tolerances minimizes risk, given environmental stochasticity, and ensures persistence, given long-term environmental change. When the thermal tolerances of populations are unknown, doubling the number of populations conserved may nearly halve expected metapopulation variability. However, this reduction in variability can come at the expense of long-term persistence if climate change increasingly restricts available habitat, forcing ecological managers to balance society's desire for short-term stability and long-term viability. Our findings suggest the importance of conserving the processes that promote thermal-tolerance diversity, such as genetic diversity, habitat heterogeneity, and natural disturbance regimes, and demonstrate that diverse natural portfolios may be critical for metapopulation conservation in the face of increasing climate variability and change.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecosistema , Modelos Biológicos , Animales , Salmón/fisiología
10.
EMBO Mol Med ; 6(5): 685-701, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705877

RESUMEN

One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions.


Asunto(s)
Codón sin Sentido , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Respuesta de Proteína Desplegada , Redes Reguladoras de Genes , Homeostasis , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , Proteoma/análisis
11.
Mol Cell Biol ; 34(14): 2554-65, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24777605

RESUMEN

It is recognized that both wild-type and mutant CFTR proteins undergo ubiquitination at multiple lysines in the proteins and in one or more subcellular locations. We hypothesized that ubiquitin is added to specific sites in wild-type CFTR to stabilize it and at other sites to signal for proteolysis. Mass spectrometric analysis of wild-type CFTR identified ubiquitinated lysines 68, 710, 716, 1041, and 1080. We demonstrate that the ubiquitinated K710, K716, and K1041 residues stabilize wild-type CFTR, protecting it from proteolysis. The polyubiquitin linkage is predominantly K63. N-tail mutants, K14R and K68R, lead to increased mature band CCFTR, which can be augmented by proteasomal (but not lysosomal) inhibition, allowing trafficking to the surface. The amount of CFTR in the K1041R mutant was drastically reduced and consisted of bands A/B, suggesting that the site in transmembrane 10 (TM10) was critical to further processing beyond the proteasome. The K1218R mutant increases total and cell surface CFTR, which is further accumulated by proteasomal and lysosomal inhibition. Thus, ubiquitination at residue 1218 may destabilize wild-type CFTR in both the endoplasmic reticulum (ER) and recycling pools. Small molecules targeting the region of residue 1218 to block ubiquitination or to preserving structure at residues 710 to 716 might be protein sparing for some forms of cystic fibrosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Lisina/metabolismo , Mutación , Ubiquitina/metabolismo , Línea Celular , Membrana Celular/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Espectrometría de Masas , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteolisis , Ubiquitinación
12.
Biochem J ; 459(2): 417-25, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24475974

RESUMEN

Defects in CFTR (cystic fibrosis transmembrane conductance regulator) maturation are central to the pathogenesis of CF (cystic fibrosis). Palmitoylation serves as a key regulator of maturational processing in other integral membrane proteins, but has not been tested previously for functional effects on CFTR. In the present study, we used metabolic labelling to confirm that wild-type and F508del CFTR are palmitoylated, and show that blocking palmitoylation with the pharmacologic inhibitor 2-BP (2-bromopalmitate) decreases steady-state levels of both wild-type and low temperature-corrected F508del CFTR, disrupts post-ER (endoplasmic reticulum) maturation and reduces ion channel function at the cell surface. PATs (protein acyl transferases) comprise a family of 23 gene products that contain a DHHC motif and mediate palmitoylation. Recombinant expression of specific PATs led to increased levels of CFTR protein and enhanced palmitoylation as judged by Western blot and metabolic labelling. Specifically, we show that DHHC-7 (i) increases steady-state levels of wild-type and F508del CFTR band B, (ii) interacts preferentially with the band B glycoform, and (iii) augments radiolabelling by [3H]palmitic acid. Interestingly, immunofluorescence revealed that DHHC-7 also sequesters the F508del protein to a post-ER (Golgi) compartment. Our findings point to the importance of palmitoylation during wild-type and F508del CFTR trafficking.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Retículo Endoplásmico/fisiología , Regulación de la Expresión Génica/fisiología , Acetiltransferasas/clasificación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoilación , Mutación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología , Proteínas Recombinantes
13.
Conserv Biol ; 27(6): 1138-46, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24299080

RESUMEN

Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate-related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and "distinct population segments" may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case-by-case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species' continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA-listed species' survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long-term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro.


Asunto(s)
Organismos Acuáticos , Cambio Climático , Especies en Peligro de Extinción/legislación & jurisprudencia , Biodiversidad , Concentración de Iones de Hidrógeno , Estados Unidos
14.
Conserv Biol ; 27(6): 1147-57, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24299081

RESUMEN

Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación.


Asunto(s)
Cambio Climático , Simulación por Computador , Conservación de los Recursos Naturales , Toma de Decisiones Asistida por Computador , Especies en Peligro de Extinción , Medición de Riesgo
15.
Conserv Biol ; 27(6): 1179-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24299084

RESUMEN

The combined effects of water diversion and climate change are a major conservation challenge for freshwater ecosystems. In the Lemhi Basin, Idaho (U.S.A.), water diversion causes changes in streamflow, and climate change will further affect streamflow and temperature. Shifts in streamflow and temperature regimes can affect juvenile salmon growth, movement, and survival. We examined the potential effects of water diversion and climate change on juvenile Chinook salmon (Oncorhynchus tshawytscha), a species listed as threatened under the U.S. Endangered Species Act (ESA). To examine the effects for juvenile survival, we created a model relating 19 years of juvenile survival data to streamflow and temperature and found spring streamflow and summer temperature were good predictors of juvenile survival. We used these models to project juvenile survival for 15 diversion and climate-change scenarios. Projected survival was 42-58% lower when streamflows were diverted than when streamflows were undiverted. For diverted streamflows, 2040 climate-change scenarios (ECHO-G and CGCM3.1 T47) resulted in an additional 11-39% decrease in survival. We also created models relating habitat carrying capacity to streamflow and made projections for diversion and climate-change scenarios. Habitat carrying capacity estimated for diverted streamflows was 17-58% lower than for undiverted streamflows. Climate-change scenarios resulted in additional decreases in carrying capacity for the dry (ECHO-G) climate model. Our results indicate climate change will likely pose an additional stressor that should be considered when evaluating the effects of anthropogenic actions on salmon population status. Thus, this type of analysis will be especially important for evaluating effects of specific actions on a particular species. Efectos Interactivos de la Desviación del Agua y el Cambio Climático en Individuos Juveniles de Salmón Chinook en la Cuenca del Río Lemhi (E.U.A.).


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/legislación & jurisprudencia , Salmón/fisiología , Migración Animal , Animales , Simulación por Computador , Idaho , Método de Montecarlo , Dinámica Poblacional , Ríos , Salmón/crecimiento & desarrollo , Movimientos del Agua
16.
Conserv Biol ; 27(6): 1201-11, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24299086

RESUMEN

Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook.


Asunto(s)
Cambio Climático , Especies en Peligro de Extinción/legislación & jurisprudencia , Salmón/fisiología , Animales , Ecosistema , Oregon , Dinámica Poblacional , Ríos
17.
Conserv Biol ; 27(6): 1222-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24299088

RESUMEN

Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long-term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long-term projections of climate-change effects provide temporal context as a species-wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas.


Asunto(s)
Organismos Acuáticos/fisiología , Cambio Climático , Conservación de los Recursos Naturales/legislación & jurisprudencia , Animales , Biodiversidad , Especies en Peligro de Extinción , Modelos Teóricos , Medición de Riesgo , Estados Unidos
18.
Protein Eng Des Sel ; 25(1): 7-14, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22119790

RESUMEN

Post-translational modifications (PTMs) play a crucial role during biogenesis of many transmembrane proteins. Previously, it had not been possible to evaluate PTMs in cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial ion channel responsible for cystic fibrosis, because of difficulty obtaining sufficient amounts of purified protein. We recently used an inducible overexpression strategy to generate recombinant CFTR protein at levels suitable for purification and detailed analysis. Using liquid chromatography (LC) tandem and multiple reaction ion monitoring (MRM) mass spectrometry, we identified specific sites of PTMs, including palmitoylation, phosphorylation, methylation and possible ubiquitination. Many of these covalent CFTR modifications have not been described previously, but are likely to influence key and clinically important molecular processes including protein maturation, gating and the mechanisms underlying certain mutations associated with disease.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/aislamiento & purificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Sitios de Unión/genética , Western Blotting , Cromatografía Liquida , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células HEK293 , Humanos , Lipoilación , Metilación , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitinación
19.
Adv Neonatal Care ; 11(6): 406-11, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22123473

RESUMEN

PURPOSE: The purpose of this study was to determine the effect of oral sucrose solution on pain responses of neonates to arterial puncture compared with neonates who did not receive a sucrose solution. SUBJECTS: Convenience sample of 47 neonates, 31 to 35 weeks' gestational age. DESIGN: Double-blind, randomized controlled trial. MAIN OUTCOME MEASURE: Changes in pain response during and after an arterial puncture. METHODS: Infants were randomly assigned to receive a 24% sucrose solution or usual care (comfort measures only) 2 minutes before an arterial puncture. Pain, heart rate, and oxygen saturation were measured before, during, and after an arterial puncture. Chi-square analysis was used to determine group differences, with P < .05 considered significant. RESULTS: Forty-seven subjects were studied during arterial puncture (sucrose, 24; no sucrose, 23). Neonates receiving sucrose solution had significantly less crying than the no sucrose group, both during and immediately after an arterial puncture (P = .006 and .022, respectively). No significant changes in other pain subscales, heart rate, or oxygen saturation were found during or after the arterial puncture (P > .05). CONCLUSION: This study found a significant reduction in the crying subscale of the Neonatal Infant Pain subscale immediately after the introduction of an arterial needle in neonates receiving a 24% sucrose solution, compared with those who did not receive sucrose solution. While prior studies found a similar reduction in pain scores after heel and venipuncture needlesticks, this is the first study evaluating a high concentration of oral sucrose to blunt the pain associated with an arterial puncture.


Asunto(s)
Manejo del Dolor/métodos , Dolor/tratamiento farmacológico , Sacarosa/administración & dosificación , Sacarosa/uso terapéutico , Administración Oral , Arterias , Llanto , Método Doble Ciego , Humanos , Recién Nacido , Análisis de Intención de Tratar , Medio Oeste de Estados Unidos , Dimensión del Dolor/métodos , Nacimiento Prematuro , Punciones/métodos , Resultado del Tratamiento
20.
Ecol Appl ; 21(5): 1643-58, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21830708

RESUMEN

Rivers and their associated floodplains are among the world's most highly altered ecosystems, resulting in billions of dollars in restoration expenditures. Successful restoration of these systems requires information at multiple spatial scales (from localized reaches to broader-scale watersheds), as well as information spanning long time frames. Here, we develop a suite of historical landscape indicators of riverine status, primarily from the perspective of salmonid management, using a case study in the Interior Columbia Basin, Washington, USA. We use a combination of historical and modern aerial photography to quantify changes in land cover and reach type, as well as potential fish habitat within channel and off-channel floodplain areas. As of 1949, 55% of the Wenatchee River floodplain had been converted to agriculture. By 2006, 62% had been modified by anthropogenic development, of which 20% was due to urban expansion. The historical percentage of agricultural land in the watershed and the contemporary percentage of urban area surpass thresholds in land cover associated with deleterious impacts on river systems. In addition, the abundance of reach types associated with the highest quality salmonid habitat (island braided and meandering reaches) has declined due to conversion to straight reach types. The area occupied by fish habitats associated with channel migration (slow/stagnant channels and dry channels) has declined approximately 25-30%. Along highly modified rivers, these habitats have also become increasingly fragmented. Caveats related to visual quality and seasonal timing of historical photographs were important considerations in the interpretation of changes witnessed for headwater island braided systems, as well as for floodplain ponds. Development of rigorous, long-term, multi-scale monitoring techniques is necessary to guide the management and restoration of river-floodplain systems for the diversity of ecosystem services they provide.


Asunto(s)
Ecosistema , Ríos , Salmonidae/fisiología , Animales , Monitoreo del Ambiente , Factores de Tiempo , Washingtón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...