Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Commun ; 15(1): 3741, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702301

RESUMEN

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Señalizadoras YAP/metabolismo , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasia Residual , Ratones , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nat Genet ; 56(1): 60-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049664

RESUMEN

In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Regulación hacia Arriba/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Citidina Desaminasa/genética , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
3.
Sci Transl Med ; 14(638): eabc7480, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35353542

RESUMEN

Residual cancer cells that survive drug treatments with targeted therapies act as a reservoir from which eventual resistant disease emerges. Although there is great interest in therapeutically targeting residual cells, efforts are hampered by our limited knowledge of the vulnerabilities existing in this cell state. Here, we report that diverse oncogene-targeted therapies, including inhibitors of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), KRAS, and BRAF, induce DNA double-strand breaks and, consequently, ataxia-telangiectasia mutated (ATM)-dependent DNA repair in oncogene-matched residual tumor cells. This DNA damage response, observed in cell lines, mouse xenograft models, and human patients, is driven by a pathway involving the activation of caspases 3 and 7 and the downstream caspase-activated deoxyribonuclease (CAD). CAD is, in turn, activated through caspase-mediated degradation of its endogenous inhibitor, ICAD. In models of EGFR mutant non-small cell lung cancer (NSCLC), tumor cells that survive treatment with small-molecule EGFR-targeted therapies are thus synthetically dependent on ATM, and combined treatment with an ATM kinase inhibitor eradicates these cells in vivo. This led to more penetrant and durable responses in EGFR mutant NSCLC mouse xenograft models, including those derived from both established cell lines and patient tumors. Last, we found that rare patients with EGFR mutant NSCLC harboring co-occurring, loss-of-function mutations in ATM exhibit extended progression-free survival on first generation EGFR inhibitor therapy relative to patients with EGFR mutant NSCLC lacking deleterious ATM mutations. Together, these findings establish a rationale for the mechanism-based integration of ATM inhibitors alongside existing targeted therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ADN , Reparación del ADN , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Neoplasia Residual
4.
J Thorac Oncol ; 17(6): 768-778, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35183775

RESUMEN

INTRODUCTION: Immune checkpoint inhibitor (ICI) therapy has been found to increase the risk/severity of immune-mediated adverse events with subsequent kinase inhibitor treatment in oncogenically driven cancers. We explored the risk for hypersensitivity with selpercatinib, a first-in-class highly selective and potent, central nervous system-active RET inhibitor, in prior ICI-treated patients with RET fusion-positive NSCLC compared with their ICI-naive counterparts. METHODS: Data from patients enrolled by December 16, 2019, in the ongoing phase 1/2 LIBRETTO-001 (NCT03157128) trial were analyzed for hypersensitivity reactions reported using preferred terms of hypersensitivity/drug hypersensitivity and defined as a constellation of symptoms/findings characterized by maculopapular rash, often preceded by fever with arthralgias/myalgias, followed by greater than or equal to 1 of the following signs/symptoms: thrombocytopenia, increased aspartate aminotransferase or alanine aminotransferase, hypotension, tachycardia, or increased creatinine. RESULTS: Of 329 patients, 22 (7%) who experienced a grade 1 to 3 hypersensitivity reaction that met the defined constellation of events were attributed to selpercatinib by investigators, and more often in prior ICI-treated (n = 17, 77%) than ICI-naive (n = 5, 23%) patients. There were 19 patients with selpercatinib-related hypersensitivity who resumed selpercatinib post-hypersensitivity with dose modification/supportive care. Furthermore, 17 patients, of whom 14 received prior ICI therapy, were still on treatment at twice daily doses of 40 mg (n = 5), 80 mg (n = 4), 120 mg (n = 4), and 160 mg (n = 4). CONCLUSIONS: Rates of selpercatinib-related hypersensitivity were low overall and, as with other kinase inhibitors, occurred predominantly in prior ICI-treated patients. Hypersensitivity to selpercatinib can be managed with supportive care measures regardless of prior ICI status and is reversible.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-ret , Pirazoles , Piridinas
6.
Oncologist ; 27(1): 22-29, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34523767

RESUMEN

BACKGROUND: LIBRETTO-001 is an ongoing, global, open-label, phase I/II study of selpercatinib in patients with advanced or metastatic solid tumors. We report interim patient-reported outcomes in patients with RET fusion-positive non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients completed the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (QLQ-C30) version 3.0 at baseline (cycle 1, day 1), approximately every other 28-day cycle until cycle 13, and every 12 weeks thereafter. Data were evaluated through cycle 13 as few patients had reached later time points. A change of ≥10 points from baseline in domain scores was considered clinically meaningful. RESULTS: Among 253 selpercatinib-treated patients, 239 were categorized into subgroups by prior therapy: treatment-naïve (n = 39), one prior line of therapy (n = 64), or two or more prior lines of therapy (n = 136). The QLQ-C30 was completed by >85% of patients at each time point. Most patients overall and in each subgroup maintained or improved in all health-related quality of life (HRQoL) domains during treatment. The percentage of patients who experienced clinically meaningful improvements ranged from 61.1% to 66.7% for global health status, 33.3% to 61.1% for dyspnea, and 46.2% to 63.0% for pain. The 61.1% of patients with improved dyspnea had two or more prior lines of therapy; median time to first improvement was 3.4 months. At the first postbaseline evaluation (cycle 3), 45.9% of all patients reported a ≥10-point reduction in pain. CONCLUSION: In this interim analysis, the majority of patients with RET fusion-positive NSCLC remained stable or improved on all QLQ-C30 subscales at each study visit, demonstrating favorable HRQoL as measured by the QLQ-C30 during treatment with selpercatinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Disnea , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Dolor , Medición de Resultados Informados por el Paciente , Proteínas Proto-Oncogénicas c-ret/análisis , Pirazoles , Piridinas , Calidad de Vida
7.
J Thorac Oncol ; 17(1): 116-129, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455066

RESUMEN

INTRODUCTION: Management of central nervous system (CNS) metastases in patients with driver-mutated NSCLC has traditionally incorporated both tyrosine kinase inhibitors (TKIs) and intracranial radiation. Whether next generation, CNS-penetrant TKIs can be used alone without upfront radiation, however, remains unknown. This multi-institutional retrospective analysis aimed to compare outcomes in patients with EGFR- or ALK-positive NSCLC who received CNS-penetrant TKI therapy alone versus in combination with radiation for new or progressing intracranial metastases. METHODS: Data were retrospectively collected from three academic institutions. Two treatment groups (CNS-penetrant TKI alone versus TKI + CNS radiation therapy) were compared for both EGFR- and ALK-positive cohorts. Outcome variables included time to progression, time to intracranial progression, and time to treatment failure, measured from the date of initiation of CNS-penetrant TKI therapy. RESULTS: A total of 147 patients were included (EGFR n = 94, ALK n = 52, both n = 1). In patients receiving radiation, larger metastases, neurologic symptoms, and receipt of steroids were more common. There were no significant differences between TKI and CNS radiation therapy plus TKI groups for any of the study outcomes, including time to progression (8.5 versus 6.9 mo, p = 0.13 [EFGR] and 11.4 versus 13.4 mo, p = 0.98 [ALK]), time to intracranial progression (14.8 versus 20.5 mo, p = 0.51 [EGFR] and 18.1 versus 21.8 mo, p = 0.65 [ALK]), or time to treatment failure (13.8 versus 8.6 mo, p = 0.26 [EGFR] and 13.5 versus 23.2 mo, p = 0.95 [ALK]). CONCLUSIONS: These results provide preliminary evidence that intracranial activity of CNS-penetrant TKIs may enable local radiation to be deferred in appropriately selected patients without negatively affecting progression.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Sistema Nervioso Central , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos
8.
Clin Cancer Res ; 27(15): 4160-4167, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34088726

RESUMEN

PURPOSE: We report the intracranial efficacy of selpercatinib, a highly potent and selective RET inhibitor, approved in the United States for RET fusion-positive non-small cell lung cancers (NSCLC). PATIENTS AND METHODS: In the global phase 1/2 LIBRETTO-001 trial (NCT03157128) in advanced RET-altered solid tumors, selpercatinib was dosed orally (160 mg twice every day) in 28-day cycles. Patients with baseline intracranial metastases had MRI/CT scans every 8 weeks for 1 year (12 weeks thereafter). In this pre-planned analysis of patients with RET fusion-positive NSCLC with baseline intracranial metastases, the primary endpoint was independently assessed intracranial objective response rate (ORR) per RECIST 1.1. Secondary endpoints included intracranial disease control rate, intracranial duration of response, and intracranial progression-free survival (PFS) independently reviewed. RESULTS: Eighty patients with NSCLC had brain metastases at baseline. Patients were heavily pretreated (median = 2 systemic therapies, range = 0-10); 56% of patients received ≥1 course of intracranial radiation (14% whole brain radiotherapy, 45% stereotactic radiosurgery). Among 22 patients with measurable intracranial disease at baseline, intracranial ORR was 82% [95% confidence interval (CI), 60-95], including 23% with complete responses. Among all intracranial responders (measurable and nonmeasurable, n = 38), median duration of intracranial response was not reached (95% CI, 9.3-NE) at a median duration of follow-up of 9.5 months (IQR = 5.7, 12.0). At 12 months, 55% of intracranial responses were ongoing. In all 80 patients, median intracranial PFS was 13.7 months (95% CI, 10.9-NE) at a median duration of follow-up of 11.0 months (IQR = 7.4, 16.5). No new safety signals were revealed in patients with brain metastases compared with the full NSCLC trial population. CONCLUSIONS: Selpercatinib has robust and durable intracranial efficacy in patients with RET fusion-positive NSCLC.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/secundario , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-ret , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/química , Femenino , Humanos , Neoplasias Pulmonares/química , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-ret/análisis , Resultado del Tratamiento
9.
Curr Treat Options Oncol ; 22(8): 72, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34165651

RESUMEN

OPINION STATEMENT: Screening for activating driver gene alterations at the time of diagnosis is the standard of care for advanced non-small cell lung cancer (NSCLC). Activating RET fusions are identified in approximately 1-2% of NSCLCs and have emerged as a targetable driver alteration. Selpercatinib and pralsetinib are RET-selective tyrosine kinase inhibitors (TKIs) with encouraging efficacy, intracranial activity, and tolerability that we recommend as first-line therapy. As with use of TKIs in other oncogene-addicted NSCLCs, development of acquired resistance is pervasive and should be specifically delineated through use of repeat tissue biopsy with genetic profiling at the time of disease progression. If an actionable resistance mechanism emerges for which there is a candidate targeted therapy, combination inhibition should be considered. Alternatively, or in the absence of such findings, platinum doublet chemotherapy or particularly platinum-pemetrexed therapy with or without bevacizumab demonstrates a moderate effect.We would not recommend the routine use of nonselective multi-targeted TKIs such as cabozantinib and vandetanib, which have modest activity but limited tolerability due to predictable off-target effects. Single-agent immunotherapy has minimal activity in RET fusion-positive NSCLC. The role of combination chemotherapy and immunotherapy requires further study but may be considered, particularly in the presence of an activating KRAS alteration. While further development of novel RET-selective TKIs may address common RET-specific resistance mutations, they will not have activity against off-target, RET-independent resistance mechanisms. This again highlights the importance of serial biopsy and next-generation sequencing for the rational choice of sequential therapy in RET fusion-positive NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Fusión Génica , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-ret/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/economía , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores
10.
Artículo en Inglés | MEDLINE | ID: mdl-34036220

RESUMEN

PURPOSE: MET dysregulation is an oncogenic driver in non-small-cell lung cancer (NSCLC), as well as a mechanism of TKI (tyrosine kinase inhibitor) resistance in patients with epidermal growth factor receptor (EGFR)-mutated disease. This study was conducted to determine safety and preliminary efficacy of the combination EGFR and MET inhibitors as a strategy to overcome and/or delay EGFR-TKI resistance. METHODS: A standard 3 + 3 dose-escalation trial of capmatinib in combination with erlotinib in patients with MET-positive NSCLC was used. Eighteen patients in the dose-escalation cohort received 100-600 mg twice daily of capmatinib with 100-150 mg daily of erlotinib. There were two dose-expansion cohorts. Cohort A included 12 patients with EGFR-mutant tumors resistant to TKIs. Cohort B included five patients with EGFR wild-type tumors. The primary outcome was to assess safety and determine the recommended phase II dose (RP2D) of the combination. RESULTS: The most common adverse events of any grade were rash (62.9%), fatigue (51%), and nausea (45.7%). Capmatinib exhibited nonlinear pharmacokinetics combined with erlotinib, while showing no significant drug interactions. The RP2D was 400 mg twice daily capmatinib tablets with 150 mg daily erlotinib. The overall response rate (ORR) and DCR in dose-expansion cohort A was 50% and 50%, respectively. In cohort B, the ORR and disease control rate were 75% and 75%. CONCLUSION: Capmatinib in combination with erlotinib demonstrated safety profiles consistent with prior studies. We observed efficacy in specific patient populations. Continued evaluation of capmatinib plus EGFR-TKIs is warranted in patients with EGFR activating mutations.

11.
NPJ Precis Oncol ; 5(1): 41, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001994

RESUMEN

Tyrosine kinase inhibitors (TKIs) targeting EGFR-mutant lung cancers promote a range of tumor regression responses to yield variable residual disease, a likely incubator for acquired resistance. Herein, rapid transcriptional responses induced by TKIs early in treatment that associate with the range of patient responses were explored. RNAseq was performed on EGFR mutant cell lines treated in vitro with osimertinib and on tumor biopsies of eight EGFR mutant lung cancer patients before and after 2 weeks of TKI treatment. Data were evaluated for gene expression programs altered upon TKI treatment. Chemokine and cytokine expression were measured by ELISA and quantitative RT-PCR. IκB Kinase (IKK) and JAK-STAT pathway dependence was tested with pharmacologic and molecular inhibitors. Tumor sections were stained for the T-cell marker CD3. Osimertinib stimulated dynamic, yet wide-ranging interferon (IFN) program regulation in EGFR mutant cell lines. IL6 and CXCL10 induction varied markedly among the EGFR mutant cell lines and was sensitive to IKK and JAK-STAT inhibitors. Analysis of matched patient biopsy pairs revealed marked, yet varied enrichment of IFN transcriptional programs, effector immune cell signatures and T-cell content in treated tumors that positively correlated with time to progression in the patients. EGFR-specific TKIs induce wide-ranging IFN response program activation originating within the cancer cell. The strong association of IFN program induction and duration of clinical response indicates that the TKI-induced IFN program instructs variable recruitment and participation of immune cells in the overall therapeutic response.

12.
J Thorac Oncol ; 16(6): 1030-1041, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33588109

RESUMEN

INTRODUCTION: In 2018, durvalumab was approved by the U.S. Food and Drug Administration as consolidation immunotherapy for patients with stage III NSCLC after definitive chemoradiotherapy (CRT). However, whether durvalumab benefits patients with EGFR-mutated NSCLC remains unknown. METHODS: We conducted a multi-institutional retrospective analysis of patients with unresectable stage III EGFR-mutated NSCLC who completed concurrent CRT. Kaplan-Meier analyses evaluated progression-free survival (PFS) between patients who completed CRT with or without durvalumab. RESULTS: Among 37 patients, 13 initiated durvalumab a median of 20 days after CRT completion. Two patients completed 12 months of treatment, with five patients discontinuing durvalumab owing to progression and five owing to immune-related adverse events (irAEs). Of 24 patients who completed CRT without durvalumab, 16 completed CRT alone and eight completed CRT with induction or consolidation EGFR tyrosine kinase inhibitors (TKIs). Median PFS was 10.3 months in patients who received CRT and durvalumab versus 6.9 months with CRT alone (log-rank p = 0.993). CRT and EGFR TKI was associated with a significantly longer median PFS (26.1 mo) compared with CRT and durvalumab or CRT alone (log-rank p = 0.023). Six patients treated with durvalumab initiated EGFR TKIs after recurrence, with one developing grade 4 pneumonitis on osimertinib. CONCLUSIONS: In this study, patients with EGFR-mutated NSCLC did not benefit with consolidation durvalumab and experienced a high frequency of irAEs. Patients who initiate osimertinib after durvalumab may be susceptible to incident irAEs. Consolidation durvalumab should be approached with caution in this setting and concurrent CRT with induction or consolidation EGFR TKIs further investigated as definitive treatment.


Asunto(s)
Neoplasias Pulmonares , Anticuerpos Monoclonales , Quimioradioterapia , Receptores ErbB/genética , Receptores ErbB/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Recurrencia Local de Neoplasia , Estudios Retrospectivos
13.
N Engl J Med ; 383(9): 813-824, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32846060

RESUMEN

BACKGROUND: RET fusions are oncogenic drivers in 1 to 2% of non-small-cell lung cancers (NSCLCs). In patients with RET fusion-positive NSCLC, the efficacy and safety of selective RET inhibition are unknown. METHODS: We enrolled patients with advanced RET fusion-positive NSCLC who had previously received platinum-based chemotherapy and those who were previously untreated separately in a phase 1-2 trial of selpercatinib. The primary end point was an objective response (a complete or partial response) as determined by an independent review committee. Secondary end points included the duration of response, progression-free survival, and safety. RESULTS: In the first 105 consecutively enrolled patients with RET fusion-positive NSCLC who had previously received at least platinum-based chemotherapy, the percentage with an objective response was 64% (95% confidence interval [CI], 54 to 73). The median duration of response was 17.5 months (95% CI, 12.0 to could not be evaluated), and 63% of the responses were ongoing at a median follow-up of 12.1 months. Among 39 previously untreated patients, the percentage with an objective response was 85% (95% CI, 70 to 94), and 90% of the responses were ongoing at 6 months. Among 11 patients with measurable central nervous system metastasis at enrollment, the percentage with an objective intracranial response was 91% (95% CI, 59 to 100). The most common adverse events of grade 3 or higher were hypertension (in 14% of the patients), an increased alanine aminotransferase level (in 12%), an increased aspartate aminotransferase level (in 10%), hyponatremia (in 6%), and lymphopenia (in 6%). A total of 12 of 531 patients (2%) discontinued selpercatinib because of a drug-related adverse event. CONCLUSIONS: Selpercatinib had durable efficacy, including intracranial activity, with mainly low-grade toxic effects in patients with RET fusion-positive NSCLC who had previously received platinum-based chemotherapy and those who were previously untreated. (Funded by Loxo Oncology and others; LIBRETTO-001 ClinicalTrials.gov number, NCT03157128.).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores , Pirazoles/administración & dosificación , Piridinas/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Hipertensión/inducido químicamente , Análisis de Intención de Tratar , Masculino , Persona de Mediana Edad , Mutación , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/efectos adversos , Proteínas Proto-Oncogénicas c-ret/análisis , Proteínas Proto-Oncogénicas c-ret/genética , Pirazoles/efectos adversos , Piridinas/efectos adversos , Transaminasas/sangre , Resultado del Tratamiento , Adulto Joven
14.
Cell ; 182(5): 1232-1251.e22, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32822576

RESUMEN

Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes.


Asunto(s)
Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Línea Celular , Ecosistema , Humanos , Neoplasias Pulmonares/patología , Macrófagos/patología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Linfocitos T/patología , Microambiente Tumoral/genética
15.
J Thorac Dis ; 12(5): 2896-2909, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32642202

RESUMEN

As the incidence of cancer increases worldwide there is an unmet need to understand cancer evolution to improve patient outcomes. Our growing knowledge of cancer cells' clonal expansion, heterogeneity, adaptation, and relationships within the tumor immune compartment and with the tumor microenvironment has made clear that cancer is a disease that benefits from heterogeneity and evolution. This review outlines recent knowledge of non-small cell lung cancer (NSCLC) pathogenesis and tumor progression from an evolutionary standpoint, focused on the role of oncogenic driver mutations as epidermal growth factor receptor (EGFR). Understanding lung cancer evolution during tumor development, growth, and under treatment pressures is crucial to improve therapeutic interventions and patient outcomes.

16.
J Thorac Oncol ; 15(10): 1611-1623, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32540409

RESUMEN

INTRODUCTION: Approximately 4% of NSCLC harbor BRAF mutations, and approximately 50% of these are non-V600 mutations. Treatment of tumors harboring non-V600 mutations is challenging because of functional heterogeneity and lack of knowledge regarding their clinical significance and response to targeted agents. METHODS: We conducted an integrative analysis of BRAF non-V600 mutations using genomic profiles of BRAF-mutant NSCLC from the Guardant360 database. BRAF mutations were categorized by clonality and class (1 and 2: RAS-independent; 3: RAS-dependent). Cell viability assays were performed in Ba/F3 models. Drug screens were performed in NSCLC cell lines. RESULTS: A total of 305 unique BRAF mutations were identified. Missense mutations were most common (276, 90%), and 45% were variants of unknown significance. F468S and N581Y were identified as novel activating mutations. Class 1 to 3 mutations had higher clonality than mutations of unknown class (p < 0.01). Three patients were treated with MEK with or without BRAF inhibitors. Patients harboring G469V and D594G mutations did not respond, whereas a patient with the L597R mutation had a durable response. Trametinib with or without dabrafenib, LXH254, and lifirafenib had more potent inhibition of BRAF non-V600-mutant NSCLC cell lines than other MEK, BRAF, and ERK inhibitors, comparable with the inhibition of BRAF V600E cell line. CONCLUSIONS: In BRAF-mutant NSCLC, clonality is higher in known functional mutations and may allow identification of variants of unknown significance that are more likely to be oncogenic drivers. Our data indicate that certain non-V600 mutations are responsive to MEK and BRAF inhibitors. This integration of genomic profiling and drug sensitivity may guide the treatment for BRAF-mutant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética
17.
Clin Cancer Res ; 26(14): 3499-3500, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32366673

RESUMEN

Overall survival and disease-free survival have been the gold standard primary endpoints for neoadjuvant clinical trials. Major pathologic response is a clinically proven surrogate of efficacy and when used as the primary endpoint, can allow for more efficient evaluation of drugs in the neoadjuvant setting.See related article by Cascone et al., p. 3525.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Cisplatino , Docetaxel , Humanos , Indoles , Terapia Neoadyuvante
18.
Clin Cancer Res ; 26(2): 439-449, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31548343

RESUMEN

PURPOSE: Although patients with advanced-stage non-small cell lung cancers (NSCLC) harboring MET exon 14 skipping mutations (METex14) often benefit from MET tyrosine kinase inhibitor (TKI) treatment, clinical benefit is limited by primary and acquired drug resistance. The molecular basis for this resistance remains incompletely understood. EXPERIMENTAL DESIGN: Targeted sequencing analysis was performed on cell-free circulating tumor DNA obtained from 289 patients with advanced-stage METex14-mutated NSCLC. RESULTS: Prominent co-occurring RAS-MAPK pathway gene alterations (e.g., in KRAS, NF1) were detected in NSCLCs with METex14 skipping alterations as compared with EGFR-mutated NSCLCs. There was an association between decreased MET TKI treatment response and RAS-MAPK pathway co-occurring alterations. In a preclinical model expressing a canonical METex14 mutation, KRAS overexpression or NF1 downregulation hyperactivated MAPK signaling to promote MET TKI resistance. This resistance was overcome by cotreatment with crizotinib and the MEK inhibitor trametinib. CONCLUSIONS: Our study provides a genomic landscape of co-occurring alterations in advanced-stage METex14-mutated NSCLC and suggests a potential combination therapy strategy targeting MAPK pathway signaling to enhance clinical outcomes.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Crizotinib/uso terapéutico , Exones , Sistema de Señalización de MAP Quinasas/genética , Proteína Oncogénica p21(ras)/genética , Proteínas Proto-Oncogénicas c-met/genética , Anciano , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento , Células Tumorales Cultivadas
19.
Cancer Discov ; 9(5): 587-604, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30992280

RESUMEN

With advances in technology and bioinformatics, we are now positioned to view and manage cancer through an evolutionary lens. This perspective is critical as our appreciation for the role of tumor heterogeneity, tumor immune compartment, and tumor microenvironment on cancer pathogenesis and evolution grows. Here, we explore recent knowledge on the evolutionary basis of cancer pathogenesis and progression, viewing tumors as multilineage, multicomponent organisms whose growth is regulated by subcomponent fitness relationships. We propose reconsidering some current tenets of the cancer management paradigm in order to take better advantage of crucial fitness relationships to improve outcomes of patients with cancer. SIGNIFICANCE: Tumor and tumor immune compartment and microenvironment heterogeneity, and their evolution, are critical disease features that affect treatment response. The impact and interplay of these components during treatment are viable targets to improve clinical response. In this article, we consider how tumor cells, the tumor immune compartment and microenvironment, and epigenetic factors interact and also evolve during treatment. We evaluate the convergence of these factors and suggest innovative treatment concepts that leverage evolutionary relationships to limit tumor growth and drug resistance.


Asunto(s)
Evolución Clonal , Evolución Molecular , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Ensayos Clínicos como Asunto , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Heterogeneidad Genética , Humanos , Neoplasias/metabolismo , Medicina de Precisión , Microambiente Tumoral/genética
20.
Cancer Res ; 79(3): 546-556, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538120

RESUMEN

Chromosomal rearrangements involving receptor tyrosine kinases (RTK) are a clinically relevant oncogenic mechanism in human cancers. These chimeric oncoproteins often contain the C-terminal kinase domain of the RTK joined in cis to various N-terminal, nonkinase fusion partners. The functional role of the N-terminal fusion partner in RTK fusion oncoproteins is poorly understood. Here, we show that distinct N-terminal fusion partners drive differential subcellular localization, which imparts distinct cell signaling and oncogenic properties of different, clinically relevant ROS1 RTK fusion oncoproteins. SDC4-ROS1 and SLC34A2-ROS1 fusion oncoproteins resided on endosomes and activated the MAPK pathway. CD74-ROS1 variants that localized instead to the endoplasmic reticulum (ER) showed compromised activation of MAPK. Forced relocalization of CD74-ROS1 from the ER to endosomes restored MAPK signaling. ROS1 fusion oncoproteins that better activate MAPK formed more aggressive tumors. Thus, differential subcellular localization controlled by the N-terminal fusion partner regulates the oncogenic mechanisms and output of certain RTK fusion oncoproteins. SIGNIFICANCE: ROS1 fusion oncoproteins exhibit differential activation of MAPK signaling according to subcellular localization, with ROS1 fusions localized to endosomes, the strongest activators of MAPK signaling.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Endosomas/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células 3T3 NIH , Proteínas de Fusión Oncogénica/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Fracciones Subcelulares/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...