Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 11(10): e12253, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214493

RESUMEN

Extracellular vesicles (EV) are important mediators of cell communication and physiology. EVs are frequently investigated by transiently transfecting cells with plasmid DNA to produce EVs modified with protein(s) or nucleic acid(s) of interest. DNA-transfection reagent complexes (DTC) are approximately the same size as EVs, raising the possibility that some purification procedures may fail to separate these two species and activity arising from carryover DTC may be improperly attributed to EVs. We find that differential ultracentrifugation, a commonly employed EV isolation procedure, does not separate EVs from DTC present in the cell culture supernatant of transiently transfected cells. We demonstrate that the biological activity of an EV-directed Cre recombinase is due to contaminating plasmid DNA and not EV-mediated delivery of Cre protein. Moreover, steps commonly taken to remove plasmid DNA from EV samples, such as media exchanges and treatment with nucleases, are ineffective at avoiding this artefact. Due to the pernicious nature of plasmid DNA in these cellular assays, some reports of EV function are likely artefacts produced by contaminating DTC. EVs and DTC can be separated by density gradient ultracentrifugation, highlighting the importance of validating elimination of DTC when using transient transfection of EV-producing cells to interrogate EV function.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Artefactos , ADN/metabolismo , Vesículas Extracelulares/genética , Indicadores y Reactivos/metabolismo , Ácidos Nucleicos/metabolismo , Transfección
2.
Mol Ther ; 29(5): 1729-1743, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484965

RESUMEN

Extracellular vesicles (EVs) are an important intercellular communication system facilitating the transfer of macromolecules between cells. Delivery of exogenous cargo tethered to the EV surface or packaged inside the lumen are key strategies for generating therapeutic EVs. We identified two "scaffold" proteins, PTGFRN and BASP1, that are preferentially sorted into EVs and enable high-density surface display and luminal loading of a wide range of molecules, including cytokines, antibody fragments, RNA binding proteins, vaccine antigens, Cas9, and members of the TNF superfamily. Molecules were loaded into EVs at high density and exhibited potent in vitro activity when fused to full-length or truncated forms of PTGFRN or BASP1. Furthermore, these engineered EVs retained pharmacodynamic activity in a variety of animal models. This engineering platform provides a simple approach to functionalize EVs with topologically diverse macromolecules and represents a significant advance toward unlocking the therapeutic potential of EVs.


Asunto(s)
Vesículas Extracelulares/trasplante , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas/administración & dosificación , Proteínas Represoras/metabolismo , Animales , Comunicación Celular , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Femenino , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/genética
3.
J Biol Chem ; 294(10): 3454-3463, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30610115

RESUMEN

Annexin proteins function as Ca2+-dependent regulators of membrane trafficking and repair that may also modulate membrane curvature. Here, using high-resolution confocal imaging, we report that the intestine-specific annexin A13 (ANX A13) localizes to the tips of intestinal microvilli and determined the crystal structure of the ANX A13a isoform to 2.6 Å resolution. The structure revealed that the N terminus exhibits an alternative fold that converts the first two helices and the associated helix-loop-helix motif into a continuous α-helix, as stabilized by a domain-swapped dimer. We also found that the dimer is present in solution and partially occludes the membrane-binding surfaces of annexin, suggesting that dimerization may function as a means for regulating membrane binding. Accordingly, as revealed by in vitro binding and cellular localization assays, ANX A13a variants that favor a monomeric state exhibited increased membrane association relative to variants that favor the dimeric form. Together, our findings support a mechanism for how the association of the ANX A13a isoform with the membrane is regulated.


Asunto(s)
Anexinas/química , Anexinas/metabolismo , Membrana Celular/metabolismo , Mucosa Intestinal/metabolismo , Multimerización de Proteína , Animales , Células Epiteliales/citología , Humanos , Concentración de Iones de Hidrógeno , Intestinos , Liposomas/metabolismo , Ratones , Modelos Moleculares , Especificidad de Órganos , Unión Proteica , Conformación Proteica en Hélice alfa , Estructura Cuaternaria de Proteína , Transporte de Proteínas
4.
J Cell Biol ; 213(2): 261-74, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27091449

RESUMEN

Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.


Asunto(s)
Axones/metabolismo , Glicoproteínas/fisiología , Proteínas del Tejido Nervioso/fisiología , Seudópodos/fisiología , Receptores Inmunológicos/fisiología , Animales , Axones/ultraestructura , Quimiotaxis , Desarrollo Embrionario , Glicoproteínas/metabolismo , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Seudópodos/metabolismo , Seudópodos/ultraestructura , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Proteínas Roundabout
5.
Cell ; 157(2): 433-446, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725409

RESUMEN

Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:


Asunto(s)
Cadherinas/metabolismo , Enterocitos/metabolismo , Microvellosidades/metabolismo , Animales , Células COS , Células CACO-2 , Proteínas Relacionadas con las Cadherinas , Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Chlorocebus aethiops , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Enterocitos/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Microvellosidades/ultraestructura , Miosinas/metabolismo , Síndromes de Usher/patología
6.
Curr Biol ; 22(7): 627-31, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22386311

RESUMEN

The continuous monolayer of intestinal epithelial cells (IECs) lining the gut lumen functions as the site of nutrient absorption and as a physical barrier to prevent the translocation of microbes and associated toxic compounds into the peripheral vasculature. IECs also express host defense proteins such as intestinal alkaline phosphatase (IAP), which detoxify bacterial products and prevent intestinal inflammation. Our laboratory recently showed that IAP is enriched on vesicles that are released from the tips of IEC microvilli and accumulate in the intestinal lumen. Here, we show that these native "lumenal vesicles" (LVs) (1) contain catalytically active IAP that can dephosphorylate lipopolysaccharide (LPS), (2) cluster on the surface of native lumenal bacteria, (3) prevent the adherence of enteropathogenic E. coli (EPEC) to epithelial monolayers, and (4) limit bacterial population growth. We also find that IECs upregulate LV production in response to EPEC and other Gram-negative pathogens. Together, these results suggest that microvillar vesicle shedding represents a novel mechanism for distributing host defense machinery into the intestinal lumen and that microvillus-derived LVs modulate epithelial-microbial interactions.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Vesículas Citoplasmáticas/metabolismo , Escherichia coli Enteropatógena/inmunología , Células Epiteliales/inmunología , Lipopolisacáridos/metabolismo , Microvellosidades/metabolismo , Animales , Células CACO-2 , Vesículas Citoplasmáticas/microbiología , Vesículas Citoplasmáticas/ultraestructura , Enterocitos/citología , Enterocitos/metabolismo , Escherichia coli Enteropatógena/crecimiento & desarrollo , Escherichia coli Enteropatógena/metabolismo , Humanos , Intestino Delgado/citología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Microscopía Electrónica de Transmisión , Microvellosidades/microbiología , Microvellosidades/ultraestructura , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo I/metabolismo , Ratas
7.
Curr Biol ; 21(9): 779-86, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21514161

RESUMEN

Autocrine, paracrine, and juxtacrine are recognized modes of action for mammalian EGFR ligands including EGF, TGF-α (TGFα), amphiregulin (AREG), heparin-binding EGF-like growth factor (HB-EGF), betacellulin, epiregulin, and epigen. We identify a new mode of EGFR ligand signaling via exosomes. Human breast and colorectal cancer cells release exosomes containing full-length, signaling-competent EGFR ligands. Exosomes isolated from MDCK cells expressing individual full-length EGFR ligands displayed differential activities; AREG exosomes increased invasiveness of recipient breast cancer cells 4-fold over TGFα or HB-EGF exosomes and 5-fold over equivalent amounts of recombinant AREG. Exosomal AREG displayed significantly greater membrane stability than TGFα or HB-EGF. An average of 24 AREG molecules are packaged within an individual exosome, and AREG exosomes are rapidly internalized by recipient cells. Whether the composition and behavior of exosomes differ between nontransformed and transformed cells is unknown. Exosomes from DLD-1 colon cancer cells with a mutant KRAS allele exhibited both higher AREG levels and greater invasive potential than exosomes from isogenically matched, nontransformed cells in which mutant KRAS was eliminated by homologous recombination. We speculate that EGFR ligand signaling via exosomes might contribute to diverse cancer phenomena such as field effect and priming of the metastatic niche.


Asunto(s)
Receptores ErbB/metabolismo , Exosomas/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Invasividad Neoplásica/fisiopatología , Transducción de Señal/fisiología , Anfirregulina , Animales , Línea Celular Tumoral , Centrifugación , Perros , Familia de Proteínas EGF , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Factor de Crecimiento Similar a EGF de Unión a Heparina , Humanos , Immunoblotting , Microscopía Electrónica , Factor de Crecimiento Transformador alfa/metabolismo
8.
Am J Physiol Gastrointest Liver Physiol ; 300(5): G914-26, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21330445

RESUMEN

The brush border domain at the apex of intestinal epithelial cells is the primary site of nutrient absorption in the intestinal tract and the primary surface of interaction with microbes that reside in the lumen. Because the brush border is positioned at such a critical physiological interface, we set out to create a comprehensive list of the proteins that reside in this domain using shotgun mass spectrometry. The resulting proteome contains 646 proteins with diverse functions. In addition to the expected collection of nutrient processing and transport components, we also identified molecules expected to function in the regulation of actin dynamics, membrane bending, and extracellular adhesion. These results provide a foundation for future studies aimed at defining the molecular mechanisms underpinning brush border assembly and function.


Asunto(s)
Enterocitos/fisiología , Microvellosidades/fisiología , Proteómica , Actinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Separación Celular , Cromatografía Líquida de Alta Presión , Biología Computacional , Citoesqueleto/metabolismo , Enterocitos/metabolismo , Técnicas In Vitro , Canales Iónicos/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Ratones de la Cepa 129 , Microvellosidades/metabolismo , Miosinas/metabolismo , Proteínas/química , Serina-Treonina Quinasas TOR/metabolismo
9.
Trends Cell Biol ; 20(7): 418-26, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20471271

RESUMEN

Class 1 myosins are small motor proteins with the ability to simultaneously bind to actin filaments and cellular membranes. Given their ability to generate mechanical force, and their high prevalence in many cell types, these molecules are well positioned to carry out several important biological functions at the interface of membrane and the actin cytoskeleton. Indeed, recent studies implicate these motors in endocytosis, exocytosis, release of extracellular vesicles, and the regulation of tension between membrane and the cytoskeleton. Many class 1 myosins also exhibit a load-dependent mechano-chemical cycle that enables them to maintain tension for long periods of time without hydrolyzing ATP. These properties put myosins-1 in a unique position to regulate dynamic membrane-cytoskeleton interactions and respond to physical forces during these events.


Asunto(s)
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Miosina Tipo I/metabolismo , Acanthamoeba/citología , Adenosina Trifosfato/metabolismo , Animales , Dictyostelium/citología , Endocitosis , Exocitosis , Humanos , Modelos Moleculares
10.
Cell Mol Life Sci ; 67(8): 1239-54, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20107861

RESUMEN

Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Miosinas/fisiología , Animales , Humanos
11.
Mol Biol Cell ; 21(6): 970-8, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20089841

RESUMEN

Epithelial cells lining the intestinal tract build an apical array of microvilli known as the brush border. Each microvillus is a cylindrical membrane protrusion that is linked to a supporting actin bundle by myosin-1a (Myo1a). Mice lacking Myo1a demonstrate no overt physiological symptoms, suggesting that other myosins may compensate for the loss of Myo1a in these animals. To investigate changes in the microvillar myosin population that may limit the Myo1a KO phenotype, we performed proteomic analysis on WT and Myo1a KO brush borders. These studies revealed that WT brush borders also contain the short-tailed class I myosin, myosin-1d (Myo1d). Myo1d localizes to the terminal web and striking puncta at the tips of microvilli. In the absence of Myo1a, Myo1d peptide counts increase twofold; this motor also redistributes along the length of microvilli, into compartments normally occupied by Myo1a. FRAP studies demonstrate that Myo1a is less dynamic than Myo1d, providing a mechanistic explanation for the observed differential localization. These data suggest that Myo1d may be the primary compensating class I myosin in the Myo1a KO model; they also suggest that dynamics govern the localization and function of different yet closely related myosins that target common actin structures.


Asunto(s)
Enterocitos/citología , Microvellosidades/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Animales , Línea Celular , Recuperación de Fluorescencia tras Fotoblanqueo , Ratones , Ratones Noqueados , Microvellosidades/ultraestructura , Cadenas Pesadas de Miosina/genética , Miosinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteómica/métodos , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
J Cell Biol ; 185(7): 1285-98, 2009 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-19564407

RESUMEN

For decades, enterocyte brush border microvilli have been viewed as passive cytoskeletal scaffolds that serve to increase apical membrane surface area. However, recent studies revealed that in the in vitro context of isolated brush borders, myosin-1a (myo1a) powers the sliding of microvillar membrane along core actin bundles. This activity also leads to the shedding of small vesicles from microvillar tips, suggesting that microvilli may function as vesicle-generating organelles in vivo. In this study, we present data in support of this hypothesis, showing that enterocyte microvilli release unilamellar vesicles into the intestinal lumen; these vesicles retain the right side out orientation of microvillar membrane, contain catalytically active brush border enzymes, and are specifically enriched in intestinal alkaline phosphatase. Moreover, myo1a knockout mice demonstrate striking perturbations in vesicle production, clearly implicating this motor in the in vivo regulation of this novel activity. In combination, these data show that microvilli function as vesicle-generating organelles, which enable enterocytes to deploy catalytic activities into the intestinal lumen.


Asunto(s)
Membrana Celular/metabolismo , Enterocitos , Microvellosidades , Orgánulos/metabolismo , Liposomas Unilamelares/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Membrana Celular/ultraestructura , Polaridad Celular , Enterocitos/citología , Enterocitos/metabolismo , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Microvellosidades/metabolismo , Microvellosidades/ultraestructura , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Orgánulos/ultraestructura , Ratas , Ratas Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 106(29): 11972-7, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19574460

RESUMEN

All cell functions that involve membrane deformation or a change in cell shape (e.g., endocytosis, exocytosis, cell motility, and cytokinesis) are regulated by membrane tension. While molecular contacts between the plasma membrane and the underlying actin cytoskeleton are known to make significant contributions to membrane tension, little is known about the molecules that mediate these interactions. We used an optical trap to directly probe the molecular determinants of membrane tension in isolated organelles and in living cells. Here, we show that class I myosins, a family of membrane-binding, actin-based motor proteins, mediate membrane/cytoskeleton adhesion and thus, make major contributions to membrane tension. These studies show that class I myosins directly control the mechanical properties of the cell membrane; they also position these motor proteins as master regulators of cellular events involving membrane deformation.


Asunto(s)
Membrana Celular/fisiología , Cadenas Pesadas de Miosina/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Supervivencia Celular , Citoesqueleto/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal , Microvellosidades/metabolismo , Células 3T3 NIH , Pinzas Ópticas , Proteínas Recombinantes de Fusión/metabolismo , Transfección
14.
J Cell Biol ; 177(4): 671-81, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17502425

RESUMEN

Microvilli are actin-rich membrane protrusions common to a variety of epithelial cell types. Within microvilli of the enterocyte brush border (BB), myosin-1a (Myo1a) forms an ordered ensemble of bridges that link the plasma membrane to the underlying polarized actin bundle. Despite decades of investigation, the function of this unique actomyosin array has remained unclear. Here, we show that addition of ATP to isolated BBs induces a plus end-directed translation of apical membrane along microvillar actin bundles. Upon reaching microvillar tips, membrane is "shed" into solution in the form of small vesicles. Because this movement demonstrates the polarity, velocity, and nucleotide dependence expected for a Myo1a-driven process, and BBs lacking Myo1a fail to undergo membrane translation, we conclude that Myo1a powers this novel form of motility. Thus, in addition to providing a means for amplifying apical surface area, we propose that microvilli function as actomyosin contractile arrays that power the release of BB membrane vesicles into the intestinal lumen.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Cadenas Pesadas de Miosina/fisiología , Adenosina Trifosfato/fisiología , Animales , Membrana Celular/ultraestructura , Ratones , Ratones Noqueados , Microvellosidades/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...