Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Sci Adv ; 10(10): eadj6834, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457492

RESUMEN

Sleep deprivation enhances risk for serious injury and fatality on the roads and in workplaces. To facilitate future management of these risks through advanced detection, we developed and validated a metabolomic biomarker of sleep deprivation in healthy, young participants, across three experiments. Bi-hourly plasma samples from 2 × 40-hour extended wake protocols (for train/test models) and 1 × 40-hour protocol with an 8-hour overnight sleep interval were analyzed by untargeted liquid chromatography-mass spectrometry. Using a knowledge-based machine learning approach, five consistently important variables were used to build predictive models. Sleep deprivation (24 to 38 hours awake) was predicted accurately in classification models [versus well-rested (0 to 16 hours)] (accuracy = 94.7%/AUC 99.2%, 79.3%/AUC 89.1%) and to a lesser extent in regression (R2 = 86.1 and 47.8%) models for within- and between-participant models, respectively. Metabolites were identified for replicability/future deployment. This approach for detecting acute sleep deprivation offers potential to reduce accidents through "fitness for duty" or "post-accident analysis" assessments.


Asunto(s)
Privación de Sueño , Sueño , Humanos , Privación de Sueño/metabolismo , Vigilia , Metabolómica , Aprendizaje Automático
2.
Eur J Med Chem ; 269: 116256, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38461679

RESUMEN

Visceral leishmaniasis is a potentially fatal disease caused by infection by the intracellular protist pathogens Leishmania donovani or Leishmania infantum. Present therapies are ineffective because of high costs, variable efficacy against different species, the requirement for hospitalization, toxicity and drug resistance. Detailed analysis of previously published hit molecules suggested a crucial role of 'guanidine' linkage for their efficacy against L. donovani. Here we report the design of 2-aminoquinazoline heterocycle as a basic pharmacophore-bearing guanidine linkage. The introduction of various groups and functionality at different positions of the quinazoline scaffold results in enhanced antiparasitic potency with modest host cell cytotoxicity using a physiologically relevant THP-1 transformed macrophage infection model. In terms of the ADME profile, the C7 position of quinazoline was identified as a guiding tool for designing better molecules. The good ADME profile of the compounds suggests that they merit further consideration as lead compounds for treating visceral leishmaniasis.


Asunto(s)
Leishmania donovani , Leishmania infantum , Leishmaniasis Visceral , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Antiparasitarios/farmacología , Quinazolinas/farmacología , Quinazolinas/uso terapéutico
3.
Metabolites ; 13(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999235

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry imaging allows for the study of metabolic activity in the tumor microenvironment of brain cancers. The detectable metabolites within these tumors are contingent upon the choice of matrix, deposition technique, and polarity setting. In this study, we compared the performance of three different matrices, two deposition techniques, and the use of positive and negative polarity in two different brain cancer types and across two species. Optimal combinations were confirmed by a comparative analysis of lipid and small-molecule abundance by using liquid chromatography-mass spectrometry and RNA sequencing to assess differential metabolites and enzymes between normal and tumor regions. Our findings indicate that in the tumor-bearing brain, the recrystallized α-cyano-4-hydroxycinnamic acid matrix with positive polarity offered superior performance for both detected metabolites and consistency with other techniques. Beyond these implications for brain cancer, our work establishes a workflow to identify optimal matrices for spatial metabolomics studies.

4.
PLoS Pathog ; 19(7): e1011006, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523385

RESUMEN

A key element of Plasmodium biology and pathogenesis is the trafficking of ~10% of the parasite proteome into the host red blood cell (RBC) it infects. To cross the parasite-encasing parasitophorous vacuole membrane, exported proteins utilise a channel-forming protein complex termed the Plasmodium translocon of exported proteins (PTEX). PTEX is obligatory for parasite survival, both in vitro and in vivo, suggesting that at least some exported proteins have essential metabolic functions. However, to date only one essential PTEX-dependent process, the new permeability pathways, has been described. To identify other essential PTEX-dependant proteins/processes, we conditionally knocked down the expression of one of its core components, PTEX150, and examined which pathways were affected. Surprisingly, the food vacuole mediated process of haemoglobin (Hb) digestion was substantially perturbed by PTEX150 knockdown. Using a range of transgenic parasite lines and approaches, we show that two major Hb proteases; falcipain 2a and plasmepsin II, interact with PTEX core components, implicating the translocon in the trafficking of Hb proteases. We propose a model where these proteases are translocated into the PV via PTEX in order to reach the cytostome, located at the parasite periphery, prior to food vacuole entry. This work offers a second mechanistic explanation for why PTEX function is essential for growth of the parasite within its host RBC.


Asunto(s)
Parásitos , Plasmodium falciparum , Animales , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Vacuolas/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Eritrocitos/parasitología , Parásitos/metabolismo , Péptido Hidrolasas/metabolismo
5.
Appl Environ Microbiol ; 89(2): e0201622, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36728421

RESUMEN

Sulfoquinovose (SQ) is a major metabolite in the global sulfur cycle produced by nearly all photosynthetic organisms. One of the major pathways involved in the catabolism of SQ in bacteria such as Escherichia coli is a variant of the glycolytic Embden-Meyerhof-Parnas (EMP) pathway termed the sulfoglycolytic EMP (sulfo-EMP) pathway, which leads to the consumption of three of the six carbons of SQ and the excretion of 2,3-dihydroxypropanesulfonate (DHPS). Comparative metabolite profiling of aerobically glucose (Glc)-grown and SQ-grown E. coli cells was undertaken to identify the metabolic consequences of the switch from glycolysis to sulfoglycolysis. Sulfoglycolysis was associated with the diversion of triose phosphates (triose-P) to synthesize sugar phosphates (gluconeogenesis) and an unexpected accumulation of trehalose and glycogen storage carbohydrates. Sulfoglycolysis was also associated with global changes in central carbon metabolism, as indicated by the changes in the levels of intermediates in the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway (PPP), polyamine metabolism, pyrimidine metabolism, and many amino acid metabolic pathways. Upon entry into stationary phase and the depletion of SQ, E. coli cells utilize their glycogen, indicating a reversal of metabolic fluxes to allow glycolytic metabolism. IMPORTANCE The sulfosugar sulfoquinovose is estimated to be produced on a scale of 10 billion metric tons per annum, making it a major organosulfur species in the biosulfur cycle. The microbial degradation of sulfoquinovose through sulfoglycolysis allows the utilization of its carbon content and contributes to the biomineralization of its sulfur. However, the metabolic consequences of microbial growth on sulfoquinovose are unclear. We use metabolomics to identify the metabolic adaptations that Escherichia coli undergoes when grown on sulfoquinovose versus glucose. This revealed the increased flux into storage carbohydrates through gluconeogenesis and the reduced flux of carbon into the TCA cycle and downstream metabolism. These changes are relieved upon entry into stationary phase and reversion to glycolytic metabolism. This work provides new insights into the metabolic consequences of microbial growth on an abundant sulfosugar.


Asunto(s)
Carbono , Escherichia coli , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucólisis , Glucosa/metabolismo , Glucógeno/metabolismo , Triosas/metabolismo , Azufre/metabolismo
6.
Neurobiol Dis ; 176: 105933, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436748

RESUMEN

In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Ratones Transgénicos , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Lípidos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
7.
Front Immunol ; 13: 926446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189274

RESUMEN

Mucosal-associated invariant T (MAIT) cells are restricted by MR1 and are known to protect against bacterial and viral infections. Our understanding of the role of MAIT cells in parasitic infections, such as visceral leishmaniasis (VL) caused by protozoan parasites of Leishmania donovani, is limited. This study showed that in response to L. infantum, human peripheral blood MAIT cells from children with leishmaniasis produced TNF and IFN-γ in an MR1-dependent manner. The overall frequency of MAIT cells was inversely correlated with alanine aminotransferase levels, a specific marker of liver damage strongly associated with severe hepatic involvement in VL. In addition, there was a positive correlation between total protein levels and the frequency of IL-17A+ CD8+ MAIT cells, whereby reduced total protein levels are a marker of liver and kidney damage. Furthermore, the frequencies of IFN-γ+ and IL-10+ MAIT cells were inversely correlated with hemoglobin levels, a marker of severe anemia. In asymptomatic individuals and VL patients after treatment, MAIT cells also produced IL-17A, a cytokine signature associated with resistance to visceral leishmaniasis, suggesting that MAIT cells play important role in protecting against VL. In summary, these results broaden our understanding of MAIT-cell immunity to include protection against parasitic infections, with implications for MAIT-cell-based therapeutics and vaccines. At last, this study paves the way for the investigation of putative MAIT cell antigens that could exist in the context of Leishmania infection.


Asunto(s)
Leishmaniasis Visceral , Células T Invariantes Asociadas a Mucosa , Alanina Transaminasa , Niño , Citocinas , Hemoglobinas , Humanos , Interleucina-10 , Interleucina-17
9.
Eur J Med Chem ; 240: 114577, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35810535

RESUMEN

Visceral leishmaniasis is a potentially fatal disease caused by the parasitic protists, Leishmania donovani and L. infantum. Current treatments remain unsuitable due to cost, the need for hospitalization, variable efficacy against different species, toxicity and emerging resistance. Herein, we report the SAR exploration of the novel hit 4-Fluoro-N-(5-(4-methoxyphenyl)-1-methyl-1H-imidazole-2-yl)benzamide [1] previously identified from a high throughput screen against Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. An extensive and informative set of analogues were synthesized incorporating key modifications around the scaffold resulting in improved potency, whilst the majority of compounds maintained low cytotoxicity against human THP-1 macrophages that are target cells for these pathogens. New lead compounds identified within this study also maintained desirable physicochemical properties, improved metabolic stability in vitro and displayed no significant mitotoxicity against HepG2 cell lines. This compound class warrants continued investigation towards development as a novel treatment for Visceral Leishmaniasis.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmaniasis Visceral , Trypanosoma cruzi , Antiprotozoarios/química , Humanos , Imidazoles/uso terapéutico , Leishmaniasis Visceral/tratamiento farmacológico
10.
Front Immunol ; 13: 897462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35880171

RESUMEN

The respiratory tract is a gateway for viruses and bacteria from the external environment to invade the human body. Critical to the protection against these invaders are dendritic cells (DCs) - a group of highly specialized myeloid cells that monitors the lung microenvironment and relays contextual and antigenic information to T cells. Following the recognition of danger signals and/or pathogen molecular associated patterns in the lungs, DCs undergo activation. This process arms DCs with the unique ability to induce the proliferation and differentiation of T cells responding to matching antigen in complex with MHC molecules. Depending on how DCs interact with T cells, the ensuing T cell response can be tolerogenic or immunogenic and as such, the susceptibility and severity of respiratory infections is influenced by the signals DCs receive, integrate, and then convey to T cells. It is becoming increasingly clear that these facets of DC biology are heavily influenced by the cellular components and metabolites produced by the lung and gut microbiota. In this review, we discuss the roles of different DC subsets in respiratory infections and outline how microbial metabolites impact the development, propensity for activation and subsequent activation of DCs. In particular, we highlight these concepts in the context of respiratory immunity.


Asunto(s)
Células Dendríticas , Infecciones del Sistema Respiratorio , Diferenciación Celular , Humanos , Pulmón , Infecciones del Sistema Respiratorio/metabolismo , Linfocitos T
11.
iScience ; 25(7): 104520, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35754722

RESUMEN

Phagocytes migrate into tissues to combat infection and maintain tissue homeostasis. As dysregulated phagocyte migration and function can lead to inflammation or susceptibility to infection, identifying molecules that control these processes is critical. Here, we show that the tetraspanin CD82 restrains the migration of neutrophils and macrophages into tissues. Cd82 -/- phagocytes exhibited excessive migration during in vivo models of peritoneal inflammation, superfusion of CXCL1, retinopathy of prematurity, and infection with the protozoan parasite L. mexicana. However, with the latter, while Cd82 -/- macrophages infiltrated infection sites at higher proportions, cutaneous L. mexicana lesions were larger and persisted, indicating a failure to control infection. Analyses of in vitro bone-marrow-derived macrophages showed CD82 deficiency altered cellular morphology, and impaired gene expression and metabolism in response to anti-inflammatory activation. Altogether, this work reveals an important role for CD82 in restraining phagocyte infiltration and mediating their differentiation in response to stimulatory cues.

12.
Cell Rep ; 39(3): 110719, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443173

RESUMEN

Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNß) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNß simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNß also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNß controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNß potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNß on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNß modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.


Asunto(s)
Interferón Tipo I , Activación de Macrófagos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Ácido Succínico
13.
Dev Cell ; 57(6): 719-731.e8, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35216681

RESUMEN

The coordinated regulation of growth control and metabolic pathways is required to meet the energetic and biosynthetic demands associated with proliferation. Emerging evidence suggests that the Hippo pathway effector Yes-associated protein 1 (YAP) reprograms cellular metabolism to meet the anabolic demands of growth, although the mechanisms involved are poorly understood. Here, we demonstrate that YAP co-opts the sterol regulatory element-binding protein (SREBP)-dependent lipogenic program to facilitate proliferation and tissue growth. Mechanistically, YAP stimulates de novo lipogenesis via mechanistic target of rapamcyin (mTOR) complex 1 (mTORC1) signaling and subsequent activation of SREBP. Importantly, YAP-dependent regulation of serum- and glucocorticoid-regulated kinase 1 (SGK1) is required to activate mTORC1/SREBP and stimulate de novo lipogenesis. We also find that the SREBP target genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) are conditionally required to support YAP-dependent proliferation and tissue growth. These studies reveal that de novo lipogenesis is a metabolic vulnerability that can be targeted to disrupt YAP-dependent proliferation and tissue growth.


Asunto(s)
Lipogénesis , Proteínas de Unión a los Elementos Reguladores de Esteroles , Proliferación Celular , Lipogénesis/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074914

RESUMEN

Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.


Asunto(s)
Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Redes y Vías Metabólicas , Metilglucósidos/metabolismo , Estrés Oxidativo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Metabolismo de los Hidratos de Carbono , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Azufre/metabolismo
15.
J Biol Chem ; 298(1): 101468, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896149

RESUMEN

Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-pyrophosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.


Asunto(s)
Apicoplastos , Ferredoxinas , Proteínas Hierro-Azufre , Proteínas Protozoarias , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Vías Biosintéticas , Difosfatos/metabolismo , Electrones , Eritritol/análogos & derivados , Eritritol/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Fosfatos de Azúcar/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
16.
Biomolecules ; 11(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34944401

RESUMEN

Cell walls of bacteria of the genera Mycobacterium and Corynebacterium contain high levels of (coryno)mycolic acids. These very long chain fatty acids are synthesized on the cytoplasmic leaflet of the inner membrane (IM) prior to conjugation to the disaccharide, trehalose, and transport to the periplasm. Recent studies on Corynebacterium glutamicum have shown that acetylation of trehalose monohydroxycorynomycolate (hTMCM) promotes its transport across the inner membrane. Acetylation is mediated by the membrane acetyltransferase, TmaT, and is dependent on the presence of a putative methyltransferase, MtrP. Here, we identify a third protein that is required for the acetylation and membrane transport of hTMCM. Deletion of the C. glutamicum gene NCgl2761 (Rv0226c in Mycobacterium tuberculosis) abolished synthesis of acetylated hTMCM (AcTMCM), resulting in an accumulation of hTMCM in the inner membrane and reduced synthesis of trehalose dihydroxycorynomycolate (h2TDCM), a major outer membrane glycolipid. Complementation with the NCgl2761 gene, designated here as mmpA, restored the hTMCM:h2TDCM ratio. Comprehensive lipidomic analysis of the ΔtmaT, ΔmtrP and ΔmmpA mutants revealed strikingly similar global changes in overall membrane lipid composition. Our findings suggest that the acetylation and membrane transport of hTMCM is regulated by multiple proteins: MmpA, MtrP and TmaT, and that defects in this process lead to global, potentially compensatory changes in the composition of inner and outer membranes.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Trehalosa/biosíntesis , Acetilación , Acetiltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/química , Citoplasma/metabolismo , Eliminación de Gen , Lipidómica , Metiltransferasas/metabolismo , Trehalosa/química
17.
Front Cell Infect Microbiol ; 11: 798549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34881198

RESUMEN

Toxoplasma gondii is an obligatory intracellular parasite that causes persistent infections in birds and mammals including ~30% of the world's human population. Differentiation from proliferative and metabolically active tachyzoites to largely dormant bradyzoites initiates the chronic phase of infection and occurs predominantly in brain and muscle tissues. Here we used murine skeletal muscle cells (SkMCs) to decipher host cellular factors that favor T. gondii bradyzoite formation in terminally differentiated and syncytial myotubes, but not in proliferating myoblast precursors. Genome-wide transcriptome analyses of T. gondii-infected SkMCs and non-infected controls identified ~6,500 genes which were differentially expressed (DEGs) in myotubes compared to myoblasts, largely irrespective of infection. On the other hand, genes related to central carbohydrate metabolism, to redox homeostasis, and to the Nrf2-dependent stress response pathway were enriched in both infected myoblast precursors and myotubes. Stable isotope-resolved metabolite profiling indicated increased fluxes into the oxidative branch of the pentose phosphate pathway (OxPPP) in infected myoblasts and into the TCA cycle in infected myotubes. High OxPPP activity in infected myoblasts was associated with increased NADPH/NADP+ ratio while myotubes exhibited higher ROS levels and lower expression of anti-oxidants and detoxification enzymes. Pharmacological reduction of ROS levels in SkMCs inhibited bradyzoite differentiation, while increased ROS induced bradyzoite formation. Thus, we identified a novel host cell-dependent mechanism that triggers stage conversion of T. gondii into persistent tissue cysts in its natural host cell type.


Asunto(s)
Toxoplasma , Animales , Diferenciación Celular , Homeostasis , Humanos , Ratones , Fibras Musculares Esqueléticas , Oxidación-Reducción , Infección Persistente
19.
Curr Opin Microbiol ; 63: 126-132, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34340099

RESUMEN

Leishmania are unusual in being able to survive long-term in the mature phagolysosome compartment of macrophages and other phagocytic cells in their mammalian hosts. Key to their survival in this niche, Leishmania amastigotes switch to a slow growth state and activate a stringent metabolic response. The stringent metabolic response may be triggered by multiple stresses and is associated with decreased metabolic fluxes, restricted use of sugars and fatty acids as carbon sources and increased dependence on metabolic homeostasis pathways. Heterogeneity in expression of the Leishmania stringent response occurs in vivo reflects temporal and spatial heterogeneity in lesion tissues and includes non-dividing dormant stages. This response underpins the capacity of these parasites to maintain long-term chronic infections and survive drug treatments.


Asunto(s)
Leishmania , Parásitos , Animales , Ácidos Grasos , Leishmania/genética , Macrófagos , Fagosomas
20.
PLoS Pathog ; 17(8): e1009835, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34432856

RESUMEN

Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is 'trans-stimulated' by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos Esenciales/metabolismo , Fibroblastos/metabolismo , Oocitos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasmosis/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Animales , Arginina/metabolismo , Transporte Biológico , Fibroblastos/parasitología , Humanos , Lisina/metabolismo , Oocitos/parasitología , Proteínas Protozoarias/genética , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...