Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 34(7): 8902-8919, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32519783

RESUMEN

TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.


Asunto(s)
Conductividad Eléctrica , Activación del Canal Iónico/fisiología , Oocitos/fisiología , Canales de Potasio/fisiología , Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Clonación Molecular , Biología Computacional , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/metabolismo , Potenciales de la Membrana , Oocitos/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia , Xenopus laevis
2.
J Mol Biol ; 387(1): 175-91, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19361449

RESUMEN

We report the X-ray crystal structure of human potassium channel tetramerization domain-containing protein 5 (KCTD5), the first member of the family to be so characterized. Four findings were unexpected. First, the structure reveals assemblies of five subunits while tetramers were anticipated; pentameric stoichiometry is observed also in solution by scanning transmission electron microscopy mass analysis and analytical ultracentrifugation. Second, the same BTB (bric-a-brac, tramtrack, broad complex) domain surface mediates the assembly of five KCTD5 and four voltage-gated K(+) (Kv) channel subunits; four amino acid differences appear crucial. Third, KCTD5 complexes have well-defined N- and C-terminal modules separated by a flexible linker that swivels by approximately 30 degrees; the C-module shows a new fold and is required to bind Golgi reassembly stacking protein 55 with approximately 1 microM affinity, as judged by surface plasmon resonance and ultracentrifugation. Fourth, despite the homology reflected in its name, KCTD5 does not impact the operation of Kv4.2, Kv3.4, Kv2.1, or Kv1.2 channels.


Asunto(s)
Biopolímeros/química , Canales de Potasio/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Electricidad Estática , Resonancia por Plasmón de Superficie
3.
J Membr Biol ; 228(1): 1-14, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19219384

RESUMEN

Kv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N-MinK and S74L-MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1-Kv2.1 complexes, channels formed with M54T- or I57T-MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio Shab/metabolismo , Animales , Western Blotting , Células CHO , Cricetinae , Cricetulus , Electrofisiología , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Mutación , Miocardio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio Shab/genética
4.
Neuron ; 58(6): 859-70, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18579077

RESUMEN

K(2P) channels mediate potassium background currents essential to central nervous system function, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Here, we show that alternative translation initiation (ATI) regulates function of K(2P)2.1 (TREK-1) via an unexpected strategy. Full-length K(2P)2.1 and an isoform lacking the first 56 residues of the intracellular N terminus (K(2P)2.1Delta1-56) are produced differentially in a regional and developmental manner in the rat central nervous system, the latter passing sodium under physiological conditions leading to membrane depolarization. Control of ion selectivity via ATI is proposed to be a natural, epigenetic mechanism for spatial and temporal regulation of neuronal excitability.


Asunto(s)
Encéfalo/fisiología , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Biosíntesis de Proteínas , Sodio/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Humanos , Datos de Secuencia Molecular , Permeabilidad , Ratas , Xenopus laevis
5.
Neuropharmacology ; 47(6): 787-821, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15527815

RESUMEN

Voltage-gated potassium (Kv) channels mediate rapid, selective diffusion of K+ ions through the plasma membrane, controlling cell excitability, secretion and signal transduction. KCNE genes encode a family of single transmembrane domain proteins called MinK-related peptides (MiRPs) that function as ancillary or beta subunits of Kv channels. When co-expressed in heterologous systems, MiRPs confer changes in Kv channel conductance, gating kinetics and pharmacology, and are fundamental to recapitulation of the properties of some native currents. Inherited mutations in KCNE genes are associated with diseases of cardiac and skeletal muscle, and the inner ear. This article reviews our current understanding of MiRPs--their functional roles, the mechanisms underlying their association with Kv alpha subunits, their patterns of native expression and emerging evidence of the potential roles of MiRPs in the brain. The ubiquity of MiRP expression and their promiscuous association with Kv alpha subunits suggest a prominent role for MiRPs in channel dependent systems.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/fisiología , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Oocitos/metabolismo , Especificidad de Órganos , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína , Xenopus
6.
J Biol Chem ; 279(9): 7884-92, 2004 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-14679187

RESUMEN

High frequency firing in mammalian neurons requires ultra-rapid delayed rectifier potassium currents generated by homomeric or heteromeric assemblies of Kv3.1 and Kv3.2 potassium channel alpha subunits. Kv3.1 alpha subunits can also form slower activating channels by coassembling with MinK-related peptide 2 (MiRP2), a single transmembrane domain potassium channel ancillary subunit. Here, using channel subunits cloned from rat and expressed in Chinese hamster ovary cells, we show that modulation by MinK, MiRP1, and MiRP2 is a general mechanism for slowing of Kv3.1 and Kv3.2 channel activation and deactivation and acceleration of inactivation, creating a functionally diverse range of channel complexes. MiRP1 also negatively shifts the voltage dependence of Kv3.1 and Kv3.2 channel activation. Furthermore, MinK, MiRP1, and MiRP2 each form channels with Kv3.1-Kv3.2 heteromers that are kinetically distinct from one another and from MiRP/homomeric Kv3 channels. The findings illustrate a mechanism for dynamic expansion of the functional repertoire of Kv3.1 and Kv3.2 potassium currents and suggest roles for these alpha subunits outside the scope of sustained rapid neuronal firing.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Neuropéptidos/fisiología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Animales , Células CHO , Cricetinae , Conductividad Eléctrica , Electrofisiología , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuropéptidos/química , Neuropéptidos/genética , Canales de Potasio/química , Canales de Potasio/genética , Ratas , Proteínas Recombinantes , Canales de Potasio de la Superfamilia Shaker , Canales de Potasio Shaw , Relación Estructura-Actividad , Transfección
7.
J Neurosci ; 23(22): 8077-91, 2003 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-12954870

RESUMEN

Delayed rectifier potassium current diversity and regulation are essential for signal processing and integration in neuronal circuits. Here, we investigated a neuronal role for MinK-related peptides (MiRPs), membrane-spanning modulatory subunits that generate phenotypic diversity in cardiac potassium channels. Native coimmunoprecipitation from rat brain membranes identified two novel potassium channel complexes, MiRP2-Kv2.1 and MiRP2-Kv3.1b. MiRP2 reduces the current density of both channels, slows Kv3.1b activation, and slows both activation and deactivation of Kv2.1. Altering native MiRP2 expression levels by RNAi gene silencing or cDNA transfection toggles the magnitude and kinetics of endogenous delayed rectifier currents in PC12 cells and hippocampal neurons. Computer simulations predict that the slower gating of Kv3.1b in complexes with MiRP2 will broaden action potentials and lower sustainable firing frequency. Thus, MiRP2, unlike other known neuronal beta subunits, provides a mechanism for influence over multiple delayed rectifier potassium currents in mammalian CNS via modulation of alpha subunits from structurally and kinetically distinct subfamilies.


Asunto(s)
Encéfalo/metabolismo , Neuropéptidos/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Potenciales de Acción/fisiología , Animales , Encéfalo/citología , Células CHO , Membrana Celular/metabolismo , Células Cultivadas , Simulación por Computador , Cricetinae , Canales de Potasio de Tipo Rectificador Tardío , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Sustancias Macromoleculares , Neuronas/metabolismo , Neuropéptidos/genética , Células PC12 , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shab , Canales de Potasio Shaw , Transfección
8.
J Neurochem ; 84(5): 1193-200, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12603842

RESUMEN

We recently showed that activation of ATP-sensitive potassium (KATP) channels in PC12 cells induces protection against the neurotoxic effect of rotenone, a mitochondrial complex I inhibitor. In this study, we sought to determine the locus of the KATP channels that mediate this protection in PC12 cells. We found that pretreatment of PC12 cells with diazoxide, a mitochondrial KATP channel selective opener, dose-dependently increases cell viability against rotenone-induced cell death as indicated in trypan blue exclusion assays. The protective effect of this preconditioning is attenuated by 5-hydroxydecanoic acid (5-HD), a selective mitochondrial KATP channel antagonist but not in the presence of HMR-1098, a selective plasma membrane KATP potassium channel antagonist. In contrast, P-1075, a selective plasma membrane KATP channel opener, does not induce protection. Using specific antibodies against SUR1 and Kir6.1, we detected immunoreactive proteins of apparent molecular masses 155 and 50 kDa, corresponding to those previously reported for SUR1 and Kir6.1, respectively, in the mitochondria-enriched fraction of PC12 cells. In addition, whole cell patch-clamp studies revealed that inward currents in PC12 cells are insensitive to P-1075, HMR-1098, glibenclamide and diazoxide, indicating that functional plasma membrane KATP channels are negligible. Taken together, our results demonstrate for the first time that activation of mitochondrial KATP channels elicits protection against rotenone-induced cell death.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Rotenona/farmacología , Desacopladores/farmacología , Animales , Western Blotting , Muerte Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Diazóxido/farmacología , Relación Dosis-Respuesta a Droga , Mitocondrias/efectos de los fármacos , Células PC12 , Técnicas de Placa-Clamp , Feocromocitoma/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Receptores de Droga/metabolismo , Fracciones Subcelulares/química , Fracciones Subcelulares/metabolismo , Receptores de Sulfonilureas
9.
J Biol Chem ; 278(14): 11739-45, 2003 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-12529362

RESUMEN

The physiological properties of most ion channels are defined experimentally by functional expression of their pore-forming alpha subunits in Xenopus laevis oocytes. Here, we cloned a family of Xenopus KCNE genes that encode MinK-related peptide K(+) channel beta subunits (xMiRPs) and demonstrated their constitutive expression in oocytes. Electrophysiological analysis of xMiRP2 revealed that when overexpressed this gene modulates human cardiac K(+) channel alpha subunits HERG (human ether-a-go-go-related gene) and KCNQ1 by suppressing HERG currents and removing the voltage dependence of KCNQ1 activation. The ability of endogenous levels of xMiRP2 to contribute to the biophysical attributes of overexpressed mammalian K(+) channels in oocyte studies was assessed next. Injection of an xMiRP2 sequence-specific short interfering RNA (siRNA) oligo reduced endogenous xMiRP2 expression 5-fold, whereas a control siRNA oligo had no effect, indicating the effectiveness of the RNA interference technique in Xenopus oocytes. The functional effects of endogenous xMiRP2 silencing were tested using electrophysiological analysis of heterologously expressed HERG channels. The RNA interference-mediated reduction of endogenous xMiRP2 expression increased macroscopic HERG current as much as 10-fold depending on HERG cRNA concentration. The functional effects of human MiRP1 (hMiRP1)/HERG interaction were also affected by endogenous xMiRP2. At high HERG channel density, at which the effects of endogenous xMiRP2 are minimal, hMiRP1 reduced HERG current. At low HERG current density, hMiRP1 paradoxically up-regulated HERG current, a result consistent with hMiRP1 rescuing HERG from suppression by endogenous xMiRP2. Thus, endogenous Xenopus MiRP subunits contribute to the base-line properties of K(+) channels like HERG in oocyte expression studies, which could explain expression level- and expression system-dependent variation in K(+) channel function.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Interferencia de ARN/fisiología , Transactivadores , Secuencia de Aminoácidos , Animales , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Expresión Génica/fisiología , Humanos , Mamíferos , Datos de Secuencia Molecular , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio/genética , ARN/farmacología , Regulador Transcripcional ERG , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA