Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 7(11): 1461-1474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34750500

RESUMEN

In mammals and plants, cytosine DNA methylation is essential for the epigenetic repression of transposable elements and foreign DNA. In plants, DNA methylation is guided by small interfering RNAs (siRNAs) in a self-reinforcing cycle termed RNA-directed DNA methylation (RdDM). RdDM requires the specialized RNA polymerase V (Pol V), and the key unanswered question is how Pol V is first recruited to new target sites without pre-existing DNA methylation. We find that Pol V follows and is dependent on the recruitment of an AGO4-clade ARGONAUTE protein, and any siRNA can guide the ARGONAUTE protein to the new target locus independent of pre-existing DNA methylation. These findings reject long-standing models of RdDM initiation and instead demonstrate that siRNA-guided ARGONAUTE targeting is necessary, sufficient and first to target Pol V recruitment and trigger the cycle of RdDM at a transcribed target locus, thereby establishing epigenetic silencing.


Asunto(s)
Proteínas Argonautas , Metilación de ADN , ARN Polimerasas Dirigidas por ADN , Arabidopsis , Proteínas Argonautas/genética , Elementos Transponibles de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Interferente Pequeño/genética
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1795): 20190417, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32075560

RESUMEN

The plant-specific RNA Polymerase IV (Pol IV) transcribes heterochromatic regions, including many transposable elements (TEs), with the well-described role of generating 24 nucleotide (nt) small interfering RNAs (siRNAs). These siRNAs target DNA methylation back to TEs to reinforce the boundary between heterochromatin and euchromatin. In the male gametophytic phase of the plant life cycle, pollen, Pol IV switches to generating primarily 21-22 nt siRNAs, but the biogenesis and function of these siRNAs have been enigmatic. In contrast to being pollen-specific, we identified that Pol IV generates these 21-22 nt siRNAs in sporophytic tissues, likely from the same transcripts that are processed into the more abundant 24 nt siRNAs. The 21-22 nt forms are specifically generated by the combined activities of DICER proteins DCL2/DCL4 and can participate in RNA-directed DNA methylation. These 21-22 nt siRNAs are also loaded into ARGONAUTE1 (AGO1), which is known to function in post-transcriptional gene regulation. Like other plant siRNAs and microRNAs incorporated into AGO1, we find a signature of genic mRNA cleavage at the predicted target site of these siRNAs, suggesting that Pol IV-generated 21-22 nt siRNAs may function to regulate gene transcript abundance. Our data provide support for the existing model that in pollen Pol IV functions in gene regulation. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas , ARN de Planta/genética , ARN Interferente Pequeño/genética , Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo
3.
Genetics ; 213(1): 127-141, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31278118

RESUMEN

The fission yeast Schizosaccharomyces pombe is a powerful genetic model system for uncovering fundamental principles of heterochromatin assembly and epigenetic inheritance of chromatin states. Heterochromatin defined by histone H3 lysine 9 methylation and HP1 proteins coats large chromosomal domains at centromeres, telomeres, and the mating-type (mat) locus. Although genetic and biochemical studies have provided valuable insights into heterochromatin assembly, many key mechanistic details remain unclear. Here, we use a sensitized reporter system at the mat locus to screen for factors affecting heterochromatic silencing. In addition to known components of heterochromatin assembly pathways, our screen identified eight new factors including the cohesin-associated protein Pds5. We find that Pds5 enriched throughout heterochromatin domains is required for proper maintenance of heterochromatin. This function of Pds5 requires its associated Eso1 acetyltransferase, which is implicated in the acetylation of cohesin. Indeed, introducing an acetylation-mimicking mutation in a cohesin subunit suppresses defects in heterochromatin assembly in pds5∆ and eso1∆ cells. Our results show that in cells lacking Pds5, cohesin interferes with heterochromatin assembly. Supporting this, eliminating cohesin from the mat locus in the pds5∆ mutant restores both heterochromatin assembly and gene silencing. These analyses highlight an unexpected requirement for Pds5 in ensuring proper coordination between cohesin and heterochromatin factors to effectively maintain gene silencing.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Genes del Tipo Sexual de los Hongos , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Cohesinas
4.
Plant Cell ; 31(4): 759-774, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30814259

RESUMEN

RNA-directed DNA methylation (RdDM) is a set of mechanisms by which transcriptionally repressive DNA and histone methylation are targeted to viruses, transposable elements, and some transgenes. We identified an Arabidopsis (Arabidopsis thaliana) mutant in which all forms of RdDM are deficient, leading to transcriptional activation of some transposable elements and the inability to initiate transgene silencing. The corresponding gene, ALY1, encodes an RNA binding nuclear export protein. Arabidopsis ALY proteins function together to export many messenger RNAs (mRNAs), but we found that ALY1 is unique among this family for its ability to enable RdDM. Through the identification of ALY1 direct targets via RNA immunoprecipitation sequencing, coupled with mRNA sequencing of nuclear and cytoplasmic fractions, we identified mRNAs of known RdDM factors that fail to efficiently export from the nucleus in aly1 mutants. We found that loss of RdDM in aly1 is a result of deficient nuclear export of the ARGONAUTE6 mRNA and subsequent decreases in ARGONAUTE6 protein, a key effector of RdDM. One aly1 allele was more severe due to an additional loss of RNA Polymerase V function, which is also necessary for RdDM. Together, our data reconcile the broad role of ALY1 in mRNA export with the specific loss of RdDM through the activities of ARGONAUTE6 and RNA Polymerase V.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Genoma de Planta/genética , ARN de Planta/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Mutación/genética , ARN Mensajero
5.
EMBO J ; 34(1): 20-35, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25388951

RESUMEN

Transposable elements (TEs) generate mutations and chromosomal instability when active. To repress TE activity, eukaryotic cells evolved mechanisms to both degrade TE mRNAs into small interfering RNAs (siRNAs) and modify TE chromatin to epigenetically inhibit transcription. Since the populations of small RNAs that participate in TE post-transcriptional regulation differ from those that establish RNA-directed DNA methylation (RdDM), the mechanism through which transcriptionally active TEs transition from post-transcriptional RNAi regulation to chromatin level control has remained unclear. We have identified the molecular mechanism of a plant pathway that functions to direct DNA methylation to transcriptionally active TEs. We demonstrated that 21-22 nucleotide (nt) siRNA degradation products from the RNAi of TE mRNAs are directly incorporated into the ARGONAUTE 6 (AGO6) protein and direct AGO6 to TE chromatin to guide its function in RdDM. We find that this pathway functions in reproductive precursor cells to primarily target long centromeric high-copy transcriptionally active TEs for RdDM prior to gametogenesis. This study provides a direct mechanism that bridges the gap between the post-transcriptional regulation of TEs and the establishment of TE epigenetic silencing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Metilación de ADN/fisiología , Elementos Transponibles de ADN/fisiología , ADN de Plantas/metabolismo , Silenciador del Gen/fisiología , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , ADN de Plantas/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética
6.
RNA Biol ; 10(8): 1379-95, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863322

RESUMEN

Transposable elements (TEs) are known to influence the regulation of neighboring genes through a variety of mechanisms. Additionally, it was recently discovered that TEs can regulate non-neighboring genes through the trans-acting nature of small interfering RNAs (siRNAs). When the epigenetic repression of TEs is lost, TEs become transcriptionally active, and the host cell acts to repress mutagenic transposition by degrading TE mRNAs into siRNAs. In this study, we have performed a genome-wide analysis in the model plant Arabidopsis thaliana and found that TE siRNA-based regulation of genic mRNAs is more pervasive than the two formerly characterized proof-of-principle examples. We identified 27 candidate genic mRNAs that do not contain a TE fragment but are regulated through partial complementarity by the accumulation of TE siRNAs and are therefore influenced by TE epigenetic activation. We have experimentally confirmed several gene targets and demonstrated that they respond to the accumulation of specific 21 nucleotide TE siRNAs that are incorporated into the Arabidopsis Argonaute1 protein. Additionally, we found that one TE siRNA specifically targets and inhibits the formation of a host protein that acts to repress TE activity, suggesting that TEs harbor and potentially evolutionarily select short sequences to act as suppressors of host TE repression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Elementos Transponibles de ADN , Genes de Plantas , ARN Interferente Pequeño/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados
7.
Plant Physiol ; 162(1): 116-31, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23542151

RESUMEN

Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , ARN Interferente Pequeño/genética , ARN Polimerasa Dependiente del ARN/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , Elementos Transponibles de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Perfilación de la Expresión Génica , Biblioteca de Genes , Silenciador del Gen , Genoma de Planta/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Análisis de Secuencia de ADN , Transgenes
8.
Trends Genet ; 28(12): 616-23, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23040327

RESUMEN

Transposable elements (TEs) are a source of endogenous small RNAs in animals and plants. These TE-derived small RNAs have been traditionally treated as functionally distinct from gene-regulating small RNAs, such as miRNAs. Two recent reports in Drosophila and Arabidopsis have blurred the lines of this distinction. In both examples, epigenetically and developmentally regulated bursts in TE expression produce gene-regulating small RNAs. In the Drosophila early embryo, maternally deposited TE-derived PIWI-interacting small RNAs (piRNAs) play a role in regulating the nanos mRNA through small RNA binding sites in the nanos 3' untranslated region (UTR). In Arabidopsis, when Athila retrotransposons are epigenetically activated, their transcripts are processed into small RNAs, which directly target the 3'UTR of the genic oligouridylate binding protein 1B (UBP1b) mRNA. Based on these two examples, we suggest that other TE-derived small RNAs regulate additional genes and propose that, through small RNAs, the epigenetic status of TEs could widely influence the genic transcriptome.


Asunto(s)
Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica , MicroARNs/genética , ARN Interferente Pequeño/genética , Regiones no Traducidas 3' , Animales , Arabidopsis/genética , Sitios de Unión , Evolución Biológica , Drosophila/embriología , Drosophila/genética , Embrión no Mamífero , Plantas/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero , Retroelementos
9.
Genetics ; 191(4): 1213-26, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22595244

RESUMEN

The highly conserved epidermal growth factor receptor (Egfr) pathway is required in all animals for normal development and homeostasis; consequently, aberrant Egfr signaling is implicated in a number of diseases. Genetic analysis of Drosophila melanogaster Egfr has contributed significantly to understanding this conserved pathway and led to the discovery of new components and targets. Here we used microarray analysis of third instar wing discs, in which Egfr signaling was perturbed, to identify new Egfr-responsive genes. Upregulated transcripts included five known targets, suggesting the approach was valid. We investigated the function of 29 previously uncharacterized genes, which had pronounced responses. The Egfr pathway is important for wing-vein patterning and using reverse genetic analysis we identified five genes that showed venation defects. Three of these genes are expressed in vein primordia and all showed transcriptional changes in response to altered Egfr activity consistent with being targets of the pathway. Genetic interactions with Egfr further linked two of the genes, Sulfated (Sulf1), an endosulfatase gene, and CG4096, an A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS) gene, to the pathway. Sulf1 showed a strong genetic interaction with the neuregulin-like ligand vein (vn) and may influence binding of Vn to heparan-sulfated proteoglycans (HSPGs). How Drosophila Egfr activity is modulated by CG4096 is unknown, but interestingly vertebrate EGF ligands are regulated by a related ADAMTS protein. We suggest Sulf1 and CG4096 are negative feedback regulators of Egfr signaling that function in the extracellular space to influence ligand activity.


Asunto(s)
Drosophila/metabolismo , Receptores ErbB/metabolismo , Retroalimentación Fisiológica , Transducción de Señal , Animales , Tipificación del Cuerpo/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epistasis Genética , Receptores ErbB/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Ligandos , Fenotipo , Unión Proteica , Interferencia de ARN , Sulfatasas/genética , Sulfatasas/metabolismo , Transcriptoma , Venas/metabolismo , Alas de Animales/metabolismo
10.
PLoS Genet ; 8(2): e1002474, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22346759

RESUMEN

The epigenetic activity of transposable elements (TEs) can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs) in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs). Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA-binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21-22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3' untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3' untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs the lines between TE and gene-regulating small RNAs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Epigénesis Genética/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Retroelementos/genética , Estrés Fisiológico/genética , Regiones no Traducidas 3'/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Humanos , MicroARNs/metabolismo , Mutación , Especificidad de Órganos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polen/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/genética
11.
J Exp Bot ; 62(5): 1621-31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21357775

RESUMEN

The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.


Asunto(s)
Arabidopsis/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polen/metabolismo , Arabidopsis/ultraestructura , Diferenciación Celular , Gametogénesis , Microtúbulos , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/ultraestructura , Polen/ultraestructura , Tubo Polínico/genética , ARN de Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...