Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(3)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800329

RESUMEN

Significant mortalities of racing pigeons occurred in Australia in late 2011 associated with a pigeon paramyxovirus serotype 1 (PPMV-1) infection. The causative agent, designated APMV-1/pigeon/Australia/3/2011 (P/Aus/3/11), was isolated from diagnostic specimens in specific pathogen free (SPF) embryonated eggs and was identified by a Newcastle Disease virus (NDV)-specific RT-PCR and haemagglutination inhibition (HI) test using reference polyclonal antiserum specific for NDV. The P/Aus/3/11 strain was further classified as PPMV-1 using the HI test and monoclonal antibody 617/161 by HI and phylogenetic analysis of the fusion gene sequence. The isolate P/Aus/3/11 had a slow haemagglutin-elution rate and was inactivated within 45 min at 56 °C. Cross HI tests generated an R value of 0.25, indicating a significant antigenic difference between P/Aus/3/11 and NDV V4 isolates. The mean death time (MDT) of SPF eggs infected with the P/Aus/3/11 isolate was 89.2 hr, characteristic of a mesogenic pathotype, consistent with other PPMV-1 strains. The plaque size of the P/Aus/3/11 isolate on chicken embryo fibroblast (CEF) cells was smaller than those of mesogenic and velogenic NDV reference strains, indicating a lower virulence phenotype in vitro and challenge of six-week-old SPF chickens did not induce clinical signs. However, sequence analysis of the fusion protein cleavage site demonstrated an 112RRQKRF117 motif, which is typical of a velogenic NDV pathotype. Phylogenetic analysis indicated that the P/Aus/3/11 isolate belongs to a distinct subgenotype within class II genotype VI of avian paramyxovirus type 1. This is the first time this genotype has been detected in Australia causing disease in domestic pigeons and is the first time since 2002 that an NDV with potential for virulence has been detected in Australia.


Asunto(s)
Avulavirus/genética , Avulavirus/aislamiento & purificación , Columbidae/virología , Genoma Viral , Genotipo , Filogenia , Animales , Avulavirus/clasificación , Avulavirus/patogenicidad , Pollos/virología , Pruebas de Inhibición de Hemaglutinación , Organismos Libres de Patógenos Específicos , Victoria , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología , Virulencia , Cigoto/virología
2.
Infect Genet Evol ; 74: 103917, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31200111

RESUMEN

Several Avian paramyxoviruses 1 (synonymous with Newcastle disease virus or NDV, used hereafter) classification systems have been proposed for strain identification and differentiation. These systems pioneered classification efforts; however, they were based on different approaches and lacked objective criteria for the differentiation of isolates. These differences have created discrepancies among systems, rendering discussions and comparisons across studies difficult. Although a system that used objective classification criteria was proposed by Diel and co-workers in 2012, the ample worldwide circulation and constant evolution of NDV, and utilization of only some of the criteria, led to identical naming and/or incorrect assigning of new sub/genotypes. To address these issues, an international consortium of experts was convened to undertake in-depth analyses of NDV genetic diversity. This consortium generated curated, up-to-date, complete fusion gene class I and class II datasets of all known NDV for public use, performed comprehensive phylogenetic neighbor-Joining, maximum-likelihood, Bayesian and nucleotide distance analyses, and compared these inference methods. An updated NDV classification and nomenclature system that incorporates phylogenetic topology, genetic distances, branch support, and epidemiological independence was developed. This new consensus system maintains two NDV classes and existing genotypes, identifies three new class II genotypes, and reduces the number of sub-genotypes. In order to track the ancestry of viruses, a dichotomous naming system for designating sub-genotypes was introduced. In addition, a pilot dataset and sub-trees rooting guidelines for rapid preliminary genotype identification of new isolates are provided. Guidelines for sequence dataset curation and phylogenetic inference, and a detailed comparison between the updated and previous systems are included. To increase the speed of phylogenetic inference and ensure consistency between laboratories, detailed guidelines for the use of a supercomputer are also provided. The proposed unified classification system will facilitate future studies of NDV evolution and epidemiology, and comparison of results obtained across the world.


Asunto(s)
Virus de la Enfermedad de Newcastle/clasificación , ARN Viral/genética , Análisis de Secuencia de ARN/métodos , Teorema de Bayes , Consenso , Curaduría de Datos , Bases de Datos Genéticas , Genotipo , Guías como Asunto , Cooperación Internacional , Funciones de Verosimilitud , Virus de la Enfermedad de Newcastle/genética , Filogenia
3.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29875251

RESUMEN

Global swine populations infected with influenza A viruses pose a persistent pandemic risk. With the exception of a few countries, our understanding of the genetic diversity of swine influenza viruses is limited, hampering control measures and pandemic risk assessment. Here we report the genomic characteristics and evolutionary history of influenza A viruses isolated in Australia from 2012 to 2016 from two geographically isolated swine populations in the states of Queensland and Western Australia. Phylogenetic analysis with an expansive human and swine influenza virus data set comprising >40,000 sequences sampled globally revealed evidence of the pervasive introduction and long-term establishment of gene segments derived from several human influenza viruses of past seasons, including the H1N1/1977, H1N1/1995, H3N2/1968, and H3N2/2003, and the H1N1 2009 pandemic (H1N1pdm09) influenza A viruses, and a genotype that contained gene segments derived from the past three pandemics (1968, reemerged 1977, and 2009). Of the six human-derived gene lineages, only one, comprising two viruses isolated in Queensland during 2012, was closely related to swine viruses detected from other regions, indicating a previously undetected circulation of Australian swine lineages for approximately 3 to 44 years. Although the date of introduction of these lineages into Australian swine populations could not be accurately ascertained, we found evidence of sustained transmission of two lineages in swine from 2012 to 2016. The continued detection of human-origin influenza virus lineages in swine over several decades with little or unpredictable antigenic drift indicates that isolated swine populations can act as antigenic archives of human influenza viruses, raising the risk of reemergence in humans when sufficient susceptible populations arise.IMPORTANCE We describe the evolutionary origins and antigenic properties of influenza A viruses isolated from two separate Australian swine populations from 2012 to 2016, showing that these viruses are distinct from each other and from those isolated from swine globally. Whole-genome sequencing of virus isolates revealed a high genotypic diversity that had been generated exclusively through the introduction and establishment of human influenza viruses that circulated in past seasons. We detected six reassortants with gene segments derived from human H1N1/H1N1pdm09 and various human H3N2 viruses that circulated during various periods since 1968. We also found that these swine viruses were not related to swine viruses collected elsewhere, indicating independent circulation. The detection of unique lineages and genotypes in Australia suggests that isolated swine populations that are sufficiently large can sustain influenza virus for extensive periods; we show direct evidence of a sustained transmission for at least 4 years between 2012 and 2016.


Asunto(s)
Variación Genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Porcinos/virología , Animales , Genotipo , Humanos , Virus de la Influenza A/genética , Epidemiología Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Queensland/epidemiología , Enfermedades de los Porcinos/epidemiología , Australia Occidental/epidemiología
4.
J Vet Diagn Invest ; 30(3): 362-369, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29463198

RESUMEN

Obtaining statistically sound numbers of sera from Hendra virus (HeV)-infected horses is problematic because affected individuals usually die or are euthanized before developing a serum antibody response. As a consequence, test validation becomes a challenge. Our approach is an extension of OIE principles for provisional recognition and included 7 validation panels tested across multiple laboratories that provided estimates for test performance characteristics. At a 0.4 S/P cutoff, 16 of 19 sera from HeV-infected horses gave positive results in the HeV soluble G, indirect ELISA (HeVsG iELISA; DSe 84.2% [95% CI: 60.4-96.6%]); 463 of 477 non-infected horse sera tested negative (DSp 97.1% [95% CI: 95.1-98.4%]). The HeVsG iELISA eliminated almost all false-positive results from the previously used HeV iELISA, with marginally decreased relative sensitivity. Assay robustness was evaluated in inter-laboratory and proficiency testing panels. The HeVsG iELISA is considered to be fit for purpose for serosurveillance and international movement of horses when virus neutralization is used for follow-up testing of positive or inconclusive serum samples.


Asunto(s)
Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus Hendra/inmunología , Enfermedades de los Caballos/virología , Animales , Caballos , Sensibilidad y Especificidad
5.
Emerg Infect Dis ; 21(2): 328-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25626011

RESUMEN

During 2014, henipavirus infection caused severe illness among humans and horses in southern Philippines; fatality rates among humans were high. Horse-to-human and human-to-human transmission occurred. The most likely source of horse infection was fruit bats. Ongoing surveillance is needed for rapid diagnosis, risk factor investigation, control measure implementation, and further virus characterization.


Asunto(s)
Brotes de Enfermedades , Infecciones por Henipavirus/epidemiología , Henipavirus/clasificación , Adolescente , Adulto , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Animales , Secuencia de Bases , Niño , Preescolar , Femenino , Henipavirus/genética , Infecciones por Henipavirus/diagnóstico , Infecciones por Henipavirus/historia , Historia del Siglo XXI , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Tipificación Molecular , Filipinas/epidemiología , Filogenia , Vigilancia de la Población , Alineación de Secuencia , Serotipificación , Proteínas Virales/química , Proteínas Virales/genética , Adulto Joven
6.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...