Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(7): 1876-1896, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34817923

RESUMEN

ZAG is a multifunctional glycoprotein with a class I MHC-like protein fold and an α1-α2 lipid-binding groove. The intrinsic ZAG ligand is unknown. Our previous studies showed that ZAG binds the dansylated C11 fatty acid, DAUDA, differently to the boron dipyrromethane C16 fatty acid, C16 -BODIPY. Here, the molecular basis for this difference was elucidated. Multi-wavelength analytical ultracentrifugation confirmed that DAUDA and C16 -BODIPY individually bind to ZAG and compete for the same binding site. Molecular docking of lipid-binding in the structurally related Cluster of differentiation 1 proteins predicted nine conserved ligand contact residues in ZAG. Twelve mutants were accordingly created by alanine scanning site directed mutagenesis for characterisation. Mutation of Y12 caused ZAG to misfold. Mutation of K147, R157 and A158 abrogated C16 -BODIPY but not DAUDA binding. L69 and T169 increased the fluorescence emission intensity of C16 -BODIPY but not of DAUDA compared to wild-type ZAG and showed that C16 -BODIPY binds close to T169 and L69. Distance measurements of the crystal structure revealed K147 forms a salt bridge with D83. A range of bioactive bulky lipids including phospholipids and sphingolipids displaced DAUDA from the ZAG binding site but unexpectedly did not displace C16 -BODIPY. We conclude that the ZAG α1-α2 groove contains separate but overlapping sites for DAUDA and C16 -BODIPY and is involved in binding to a bulkier and wider repertoire of lipids than previously reported. This work suggested that the in vivo activity of ZAG may be dictated by its lipid ligand.


Asunto(s)
Zinc , Zn-alfa-2-Glicoproteína , Ácidos Grasos/metabolismo , Glicoproteínas/metabolismo , Simulación del Acoplamiento Molecular , Zinc/metabolismo
2.
J Biol Chem ; 295(48): 16342-16358, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32928961

RESUMEN

The human complement Factor H-related 5 protein (FHR5) antagonizes the main circulating complement regulator Factor H, resulting in the deregulation of complement activation. FHR5 normally contains nine short complement regulator (SCR) domains, but a FHR5 mutant has been identified with a duplicated N-terminal SCR-1/2 domain pair that causes CFHR5 nephropathy. To understand how this duplication causes disease, we characterized the solution structure of native FHR5 by analytical ultracentrifugation and small-angle X-ray scattering. Sedimentation velocity and X-ray scattering indicated that FHR5 was dimeric, with a radius of gyration (Rg ) of 5.5 ± 0.2 nm and a maximum protein length of 20 nm for its 18 domains. This result indicated that FHR5 was even more compact than the main regulator Factor H, which showed an overall length of 26-29 nm for its 20 SCR domains. Atomistic modeling for FHR5 generated a library of 250,000 physically realistic trial arrangements of SCR domains for scattering curve fits. Only compact domain structures in this library fit well to the scattering data, and these structures readily accommodated the extra SCR-1/2 domain pair present in CFHR5 nephropathy. This model indicated that mutant FHR5 can form oligomers that possess additional binding sites for C3b in FHR5. We conclude that the deregulation of complement regulation by the FHR5 mutant can be rationalized by the enhanced binding of FHR5 oligomers to C3b deposited on host cell surfaces. Our FHR5 structures thus explained key features of the mechanism and pathology of CFHR5 nephropathy.


Asunto(s)
Proteínas del Sistema Complemento/química , Enfermedades Renales , Mutación , Multimerización de Proteína , Complemento C3b/química , Complemento C3b/genética , Complemento C3b/metabolismo , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Células HEK293 , Humanos , Dominios Proteicos
3.
Biochem J ; 476(19): 2815-2834, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31506272

RESUMEN

Human zinc-α2-glycoprotein (ZAG) is a 42 kDa adipokine which regulates body fat mass and is associated with cachexia and obesity. ZAG belongs to the major histocompatibility complex class I protein family and binds long-chain polyunsaturated fatty acids in its groove formed from the α1 and α2 domains. To identify the molecular basis of its lipid-binding function, we determined the first crystal structure at 2.49 Šresolution for fatty acid-bound ZAG, where the ligand was the fluorescent 11-(dansylamino)undecanoic acid (DAUDA). The 192 kDa crystallographic asymmetric unit contained six ZAG and eight fatty acid molecules in unique conformations. Six fatty acid molecules were localised to the ZAG grooves, where their tails were bound in two distinct conformations. The carboxylate groups of three fatty acids projected out of the groove, while the fourth was hydrogen bonded with R73 inside the groove. Other ligand-residue contacts were primarily hydrophobic. A new fatty acid site was revealed for two further DAUDA molecules at the ZAG α3 domains. Following conformational changes from unbound ZAG, the α3 domains formed tetrameric ß-barrel structures lined by fatty acid molecules that doubled the binding capacity of ZAG. Analytical ultracentrifugation revealed that ZAG in solution was a monomer in the absence of DAUDA, but formed small amounts of tetramers with DAUDA. By showing that ZAG binds fatty acids in different locations, we demonstrate an augmented mechanism for fatty acid binding in ZAG that is distinct from other known fatty acid binding proteins, and may be relevant to cachexia.


Asunto(s)
Proteínas Portadoras/química , Ácidos Grasos/química , Glicoproteínas/química , Adipoquinas , Sitios de Unión , Cristalografía por Rayos X , Compuestos de Dansilo/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Humanos , Ligandos , Modelos Moleculares , Dominios Proteicos
4.
Biochem J ; 473(1): 43-54, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26487699

RESUMEN

Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.


Asunto(s)
Proteínas Portadoras/metabolismo , Ácidos Grasos/metabolismo , Glicoproteínas/metabolismo , Zinc/metabolismo , Adipoquinas , Sitios de Unión/fisiología , Proteínas Portadoras/química , Ácidos Grasos/química , Glicoproteínas/química , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Zinc/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-25305177

RESUMEN

Pre-eclampsia is characterized by placental hypoxia and dyslipidemia. Arachidonic and docosahexanoic acids are essential maternal nutrients for fetal development. They are transported via placental trophoblast cells by membrane and cytosolic fatty acid binding proteins. Others report the expressions of these proteins which are increased in hypoxic trophoblasts. Using bioinformatics, BeWo cells, reporter assays, quantitative real-time PCR and immunoblotting we tested the hypothesis that hypoxia inducible factors 1α (HIF-1α) and/or 2α (HIF-2α) regulate the expressions of FABP1, FABP3, FABP4 and FATP2 proteins. Three hypoxia responsive elements (HRE) were identified in FABP1 which cumulatively responded strongly to HIF-1α and weakly to HIF-2α. FABP3 expression partially responded to HIF-1α. Two putative HRE were validated in FABP4 both of which responded weakly to HIF-1α and HIF-2α. FATP2 protein expression reacted positively to hypoxia. Thus, fetal essential fatty acid supply via the placenta is protected under hypoxia. It will be interesting to determine if our findings are replicated in human pre-eclamptic placenta.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Femenino , Humanos , Embarazo , Regiones Promotoras Genéticas
6.
FEBS Lett ; 587(24): 3949-54, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24188824

RESUMEN

Zinc-α2-glycoprotein (ZAG) is an adipokine with an MHC class I-like protein fold. Even though zinc causes ZAG to precipitate from plasma during protein purification, no zinc binding has been identified to date. Using mass spectrometry, we demonstrated that ZAG contains one strongly bound zinc ion, predicted to lie close to the α1 and α2 helical groove. UV, CD and fluorescence spectroscopies detected weak zinc binding to holo-ZAG, which can bind up to 15 zinc ions. Zinc binding to 11-(dansylamino) undecanoic acid was enhanced by holo-ZAG. Zinc binding may be important for ZAG binding to fatty acids and the ß-adrenergic receptor.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Zinc/metabolismo , Adipoquinas , Sitios de Unión , Ácidos Grasos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Secundaria de Proteína , Receptores Adrenérgicos beta/metabolismo , Especificidad por Sustrato , Zinc/química
7.
Biochemistry ; 45(7): 2035-41, 2006 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-16475792

RESUMEN

Zn-alpha(2)-glycoprotein (ZAG) is a soluble lipid-mobilizing factor associated with cancer cachexia and is a novel adipokine. Its X-ray crystal structure reveals a poly(ethylene glycol) molecule, presumably substituting for a higher affinity natural ligand, occupying an apolar groove between its alpha(1) and alpha(2) domain helices that corresponds to the peptide binding groove in class I MHC proteins. We previously provided evidence that the groove is a binding site for hydrophobic ligands that may relate to the protein's signaling function and that the natural ligands are probably (polyunsaturated) fatty acid-like. Using fluorescence-based binding assays and site-directed mutagenesis, we now demonstrate formally that the groove is indeed the binding site for hydrophobic ligands. We also identify amino acid positions that are involved in ligand binding and those that control the shape and exposure to solvent of the binding site itself. Some of the mutants showed minimal effects on their binding potential, one showed enhanced binding, and several were completely nonbinding. Particularly notable is Arg-73, which projects into one end of the binding groove and is the sole charged amino acid adjacent to the ligand. Replacing this amino acid with alanine abolished ligand binding and closed the groove to solvent. Arg-73 may therefore have an unexpected dual role in binding site access and anchor for an amphiphilic ligand. These data add weight to the distinctiveness of ZAG among MHC class I-like proteins in addition to providing defined binding-altered mutants for cellular signaling studies and potential medical applications.


Asunto(s)
Sitios de Unión/efectos de los fármacos , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/fisiología , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Compuestos de Dansilo/química , Ácidos Grasos/química , Humanos , Ligandos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica/efectos de los fármacos , Alineación de Secuencia , Espectrometría de Fluorescencia , Zn-alfa-2-Glicoproteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...