Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(28): 10227-32, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982156

RESUMEN

Holobionts are species-specific associations between macro- and microorganisms. On coral reefs, the benthic coverage of coral and algal holobionts varies due to natural and anthropogenic forcings. Different benthic macroorganisms are predicted to have specific microbiomes. In contrast, local environmental factors are predicted to select for specific metabolic pathways in microbes. To reconcile these two predictions, we hypothesized that adaptation of microbiomes to local conditions is facilitated by the horizontal transfer of genes responsible for specific metabolic capabilities. To test this hypothesis, microbial metagenomes were sequenced from 22 coral reefs at 11 Line Islands in the central Pacific that together span a wide range of biogeochemical and anthropogenic influences. Consistent with our hypothesis, the percent cover of major benthic functional groups significantly correlated with particular microbial taxa. Reefs with higher coral cover had a coral microbiome with higher abundances of Alphaproteobacteria (such as Rhodobacterales and Sphingomonadales), whereas microbiomes of algae-dominated reefs had higher abundances of Gammaproteobacteria (such as Alteromonadales, Pseudomonadales, and Vibrionales), Betaproteobacteria, and Bacteriodetes. In contrast to taxa, geography was the strongest predictor of microbial community metabolism. Microbial communities on reefs with higher nutrient availability (e.g., equatorial upwelling zones) were enriched in genes involved in nutrient-related metabolisms (e.g., nitrate and nitrite ammonification, Ton/Tol transport, etc.). On reefs further from the equator, microbes had more genes encoding chlorophyll biosynthesis and photosystems I/II. These results support the hypothesis that core microbiomes are determined by holobiont macroorganisms, and that those core taxa adapt to local conditions by selecting for advantageous metabolic genes.


Asunto(s)
Adaptación Fisiológica , Bacterias , Arrecifes de Coral , Transferencia de Gen Horizontal , Metagenoma , Microbiota , Contaminación del Agua , Bacterias/genética , Bacterias/metabolismo , Océano Pacífico
2.
Environ Microbiol ; 14(11): 3043-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23039259

RESUMEN

Oxygen minimum zones (OMZs) are oceanographic features that affect ocean productivity and biodiversity, and contribute to ocean nitrogen loss and greenhouse gas emissions. Here we describe the viral communities associated with the Eastern Tropical South Pacific (ETSP) OMZ off Iquique, Chile for the first time through abundance estimates and viral metagenomic analysis. The viral-to-microbial ratio (VMR) in the ETSP OMZ fluctuated in the oxycline and declined in the anoxic core to below one on several occasions. The number of viral genotypes (unique genomes as defined by sequence assembly) ranged from 2040 at the surface to 98 in the oxycline, which is the lowest viral diversity recorded to date in the ocean. Within the ETSP OMZ viromes, only 4.95% of genotypes were shared between surface and anoxic core viromes using reciprocal BLASTn sequence comparison. ETSP virome comparison with surface marine viromes (Sargasso Sea, Gulf of Mexico, Kingman Reef, Chesapeake Bay) revealed a dissimilarity of ETSP OMZ viruses to those from other oceanic regions. From the 1.4 million non-redundant DNA sequences sampled within the altered oxygen conditions of the ETSP OMZ, more than 97.8% were novel. Of the average 3.2% of sequences that showed similarity to the SEED non-redundant database, phage sequences dominated the surface viromes, eukaryotic virus sequences dominated the oxycline viromes, and phage sequences dominated the anoxic core viromes. The viral community of the ETSP OMZ was characterized by fluctuations in abundance, taxa and diversity across the oxygen gradient. The ecological significance of these changes was difficult to predict; however, it appears that the reduction in oxygen coincides with an increased shedding of eukaryotic viruses in the oxycline, and a shift to unique viral genotypes in the anoxic core.


Asunto(s)
Biodiversidad , Oxígeno/metabolismo , Agua de Mar/virología , Fenómenos Fisiológicos de los Virus , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Chile , Genotipo , Nitrógeno/metabolismo , Océanos y Mares , Oxidación-Reducción , Filogenia , Azufre/metabolismo , Virus/genética
3.
PLoS One ; 7(9): e43233, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970122

RESUMEN

The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.


Asunto(s)
Bacterias/metabolismo , Arrecifes de Coral , Animales , Metabolismo Basal , Metabolismo Energético , Peces/metabolismo , Actividades Humanas , Humanos , Islas , Modelos Lineales , Océano Pacífico
4.
Proc Natl Acad Sci U S A ; 108 Suppl 1: 4547-53, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20547834

RESUMEN

The human oropharynx is a reservoir for many potential pathogens, including streptococcal species that cause endocarditis. Although oropharyngeal microbes have been well described, viral communities are essentially uncharacterized. We conducted a metagenomic study to determine the composition of oropharyngeal DNA viral communities (both phage and eukaryotic viruses) in healthy individuals and to evaluate oropharyngeal swabs as a rapid method for viral detection. Viral DNA was extracted from 19 pooled oropharyngeal swabs and sequenced. Viral communities consisted almost exclusively of phage, and complete genomes of several phage were recovered, including Escherichia coli phage T3, Propionibacterium acnes phage PA6, and Streptococcus mitis phage SM1. Phage relative abundances changed dramatically depending on whether samples were chloroform treated or filtered to remove microbial contamination. pblA and pblB genes of phage SM1 were detected in the metagenomes. pblA and pblB mediate the attachment of S. mitis to platelets and play a significant role in S. mitis virulence in the endocardium, but have never previously been detected in the oral cavity. These genes were also identified in salivary metagenomes from three individuals at three time points and in individual saliva samples by PCR. Additionally, we demonstrate that phage SM1 can be induced by commonly ingested substances. Our results indicate that the oral cavity is a reservoir for pblA and pblB genes and for phage SM1 itself. Further studies will determine the association between pblA and pblB genes in the oral cavity and the risk of endocarditis.


Asunto(s)
Bacteriófagos/genética , Plaquetas/metabolismo , Endocarditis/virología , Escherichia coli/virología , Boca/microbiología , Filogenia , Propionibacterium acnes/virología , Streptococcus mitis/virología , Bacteriófagos/aislamiento & purificación , Secuencia de Bases , California , Biología Computacional , Citometría de Flujo , Genes Virales/genética , Humanos , Metagenómica , Datos de Secuencia Molecular , Boca/virología , Análisis de Secuencia de ADN
5.
PLoS Comput Biol ; 5(12): e1000593, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20011103

RESUMEN

Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.


Asunto(s)
Genoma Bacteriano , Genoma Viral , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Diseño de Software , Bases de Datos de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...