Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1357797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463486

RESUMEN

Plant microbiomes are known to serve several important functions for their host, and it is therefore important to understand their composition as well as the factors that may influence these microbial communities. The microbiome of Thalassia testudinum has only recently been explored, and studies to-date have primarily focused on characterizing the microbiome of plants in a single region. Here, we present the first characterization of the composition of the microbial communities of T. testudinum across a wide geographical range spanning three distinct regions with varying physicochemical conditions. We collected samples of leaves, roots, sediment, and water from six sites throughout the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico. We then analyzed these samples using 16S rRNA amplicon sequencing. We found that site and region can influence the microbial communities of T. testudinum, while maintaining a plant-associated core microbiome. A comprehensive comparison of available microbial community data from T. testudinum studies determined a core microbiome composed of 14 ASVs that consisted mostly of the family Rhodobacteraceae. The most abundant genera in the microbial communities included organisms with possible plant-beneficial functions, like plant-growth promoting taxa, disease suppressing taxa, and nitrogen fixers.

2.
Nat Ecol Evol ; 8(4): 663-675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366132

RESUMEN

Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process ('tropicalization') has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse.


Asunto(s)
Ecosistema , Herbivoria , Cadena Alimentaria , Bosques , Cambio Climático , Plantas
3.
Mar Environ Res ; 186: 105901, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36753882

RESUMEN

Substantial losses of the seagrass Posidonia oceanica have initiated investigations into localized resilience declines related to anthropogenic disturbances. In this study, we determined reconstructed shoot age and interannual growth metrics can detect anthropogenic impact effects on P. oceanica production. Interannual rhizome vertical growth, leaf production, and demographics of shoots collected from sewage and trawling impacted areas were examined using mixed effects modeling. Detected impact effects were specific to the type of impact, manifesting as an older-skewed age distribution of sewage outfall shoots and reduced vertical growth and reduced leaf production of trawling site shoots. A stress event period was also detected for all shoots >5 years old, with trawling impacted shoots indicating little recovery. Reconstructed age and growth metrics are simple to measure, incorporate multiple years of in situ shoot development, and are advantageous for identification of declining P. oceanica resilience prior to catastrophic losses.


Asunto(s)
Alismatales , Efectos Antropogénicos , Benchmarking , Aguas del Alcantarillado , Hojas de la Planta , Mar Mediterráneo
4.
PeerJ ; 10: e13855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032953

RESUMEN

Drift macroalgae, often found in clumps or mats adjacent to or within seagrass beds, can increase the value of seagrass beds as habitat for nekton via added food resources and structural complexity. But, as algal biomass increases, it can also decrease light availability, inhibit faunal movements, smother benthic communities, and contribute to hypoxia, all of which can reduce nekton abundance. We quantified the abundance and distribution of drift macroalgae within seagrass meadows dominated by turtle grass Thalassia testudinum across the northern Gulf of Mexico and compared seagrass characteristics to macroalgal biomass and distribution. Drift macroalgae were most abundant in areas with higher seagrass shoot densities and intermediate canopy heights. We did not find significant relationships between algal biomass and point measures of salinity, temperature, or depth. The macroalgal genera Laurencia and Gracilaria were present across the study region, Agardhiella and Digenia were collected in the western Gulf of Mexico, and Acanthophora was collected in the eastern Gulf of Mexico. Our survey revealed drift algae to be abundant and widespread throughout seagrass meadows in the northern Gulf of Mexico, which likely influences the habitat value of seagrass ecosystems.


Asunto(s)
Hydrocharitaceae , Algas Marinas , Ecosistema , Golfo de México , Biomasa
5.
PeerJ ; 9: e12593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036127

RESUMEN

Estuarine ecosystem balance typically relies on strong food web interconnectedness dependent on a relatively low number of resident taxa, presenting a potential ecological vulnerability to extreme ecosystem disturbances. Following the Deepwater Horizon (DwH) oil spill disaster of the northern Gulf of Mexico (USA), numerous ecotoxicological studies showed severe species-level impacts of oil exposure on estuarine fish and invertebrates, yet post-spill surveys found little evidence for severe impacts to coastal populations, communities, or food webs. The acknowledgement that several confounding factors may have limited researchers' abilities to detect negative ecosystem-level impacts following the DwH spill drives the need for direct testing of weathered oil exposure effects on estuarine residents with high trophic connectivity. Here, we describe an experiment that examined the influence of previous exposure to four weathered oil concentrations (control: 0.0 L oil m-2; low: 0.1 L oil m-2; moderate: 0.5-1 L oil m-2; high: 3.0 L oil m-2) on foraging rates of the ecologically important Gulf killifish (Fundulus grandis). Following exposure in oiled saltmarsh mesocosms, killifish were allowed to forage on grass shrimp (Palaeomonetes pugio) for up to 21 h. We found that previous exposure to the high oil treatment reduced killifish foraging rate by ~37% on average, compared with no oil control treatment. Previous exposure to the moderate oil treatment showed highly variable foraging rate responses, while low exposure treatment was similar to unexposed responses. Declining foraging rate responses to previous high weathered oil exposure suggests potential oil spill influence on energy transfer between saltmarsh and off-marsh systems. Additionally, foraging rate variability at the moderate level highlights the large degree of intraspecific variability for this sublethal response and indicates this concentration represents a potential threshold of oil exposure influence on killifish foraging. We also found that consumption of gravid vs non-gravid shrimp was not independent of prior oil exposure concentration, as high oil exposure treatment killifish consumed ~3× more gravid shrimp than expected. Our study findings highlight the sublethal effects of prior oil exposure on foraging abilities of ecologically valuable Gulf killifish at realistic oil exposure levels, suggesting that important trophic transfers of energy to off-marsh systems may have been impacted, at least in the short-term, by shoreline oiling at highly localized scales. This study provides support for further experimental testing of oil exposure effects on sublethal behavioral impacts of ecologically important estuarine species, due to the likelihood that some ecological ramifications of DwH on saltmarshes likely went undetected.

6.
Mar Pollut Bull ; 155: 111098, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32469757

RESUMEN

The 2010 Deepwater Horizon (DwH) oil spill in the Gulf of Mexico discharged ~3.19 million barrels of oil into Gulf waters, making it one of the largest marine disasters in history in terms of volume. We report on the results of a study to assess oil impacts to coastal fishes and invertebrates. Using two-decades of fisheries-independent data in coastal Alabama and Mississippi, we document variability following both natural and anthropogenic disturbances from two periods pre-DwH (1997-2001 and 2007-2009), one intra-spill period for acute DwH effects (2010-2012) and one period post-spill for chronic, longer-term impacts (2014-2017). Results indicated significant changes to community structure, relative abundance, and diversity in the intra-spill period. Causation for changes is confounded by variables such as behavioral emigration, altered freshwater inflow, death of consumers, and the mandated fishery closure. Results highlight the need for long-term, comprehensive monitoring/observing systems to provide adequate background for assessing future disturbances.


Asunto(s)
Desastres , Contaminación por Petróleo , Contaminantes Químicos del Agua/análisis , Alabama , Animales , Monitoreo del Ambiente , Golfo de México , Mississippi
7.
PeerJ ; 8: e10587, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384905

RESUMEN

Oil spills threaten the structure and function of ecological communities. The Deepwater Horizon spill was predicted to have catastrophic consequences for nearshore fishes, but field studies indicate resilience in populations and communities. Previous research indicates many marsh fishes exhibit avoidance of oil contaminated areas, representing one potential mechanism for this resilience. Here, we test whether prior oil exposure of Gulf killifish Fundulus grandis alters this avoidance response. Using choice tests between unoiled and oiled sediments at one of three randomized concentrations (low: 0.1 L oil m-2, medium: 0.5 L oil m-2, or high: 3.0 L oil m-2), we found that, even at low prior exposure levels, killifish lose recognition of oiled sediments compared to control, unexposed fish. Preference for unoiled sediments was absent across all oil concentrations after oil exposure, and some evidence for preference of oiled sediments at high exposure was demonstrated. These results highlight the lack of response to toxic environments in exposed individuals, indicating altered behavior despite organism survival. Future research should document additional sublethal consequences that affect ecosystem and food web functioning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA