Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Intern Med J ; 49(8): 954-961, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31387156

RESUMEN

The multiple endocrine neoplasia (MEN) syndromes include MEN1, MEN2 (formerly MEN2A), MEN3 (formerly MEN2B) and the recently identified MEN4. Clinical presentations are varied and often relate to the overproduction of specific hormones. Understanding the genetics of each syndrome assists in determining screening timelines. Treatments for each manifestation are dependent on location, risk of recurrence or malignancy, hormone excess and surgical morbidity. Multidisciplinary management should include geneticists, genetic counsellors, endocrinologists and endocrine surgeons.


Asunto(s)
Neoplasia Endocrina Múltiple/diagnóstico , Neoplasia Endocrina Múltiple/genética , Neoplasia Endocrina Múltiple/terapia , Terapia Combinada , Procedimientos Quirúrgicos Endocrinos , Marcadores Genéticos , Pruebas Genéticas , Humanos , Neoplasia Endocrina Múltiple/clasificación , Recurrencia
2.
Bioorg Med Chem ; 17(9): 3317-23, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19362848

RESUMEN

The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N(5)-carboxyaminoimidazole ribonucleotide (N(5)-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N(5)-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coliN(5)-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis-Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis-Menten kinetics. Instead, these compounds inhibit N(5)-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N(5)-CAIR synthetase.


Asunto(s)
Proteínas de Escherichia coli/química , Ligasas/antagonistas & inhibidores , Ribonucleótidos/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Ligasas/química , Ligasas/metabolismo , Modelos Moleculares , Ribonucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...